Давай рассуждать. Например, нарисовали правильный 333-угольник (т.е. все стороны его равны между собой) Теперь возьмем для начала точку (любую) - она будет вершиной искомого 3-уг. Осталось 332 точки. Т.е. 166 (это 332/2) по часовой стрелке и 166 против от нашей точки. Т.е. с вершиной из этой точки можно начертить 166 равнобедренных треуг. (что они равнобедр - это отдельное ( простое доказательство, но нам, вероятно, в данном случае это не нужно). А сколько первоначальных точек всего? 333. Т.е. искомых треугольников будет 333*166
Теперь возьмем для начала точку (любую) - она будет вершиной искомого 3-уг.
Осталось 332 точки. Т.е. 166 (это 332/2) по часовой стрелке и 166 против от нашей точки. Т.е. с вершиной из этой точки можно начертить 166 равнобедренных треуг. (что они равнобедр - это отдельное ( простое доказательство, но нам, вероятно, в данном случае это не нужно). А сколько первоначальных точек всего? 333.
Т.е. искомых треугольников будет 333*166
Sabcd ≈ 7,5 ед.
Объяснение:
В треугольнике АВН угол АНВ прямой, так как опирается на диаметр. => ВН - высота трапеции.
Трапеция равнобедренная и <BAD = <СDА = 75°. <ABH = 15°.
Проведем BQ параллельно CD.
AH=HQ (АВ = BQ так как BQ=CD, a CD=AB). <ABQ = 30°.
В треугольнике АВН:
BH = 2*R*Sin75. АН = 2*R*Cos75. HD =AH+BC = 2*R*Cos75+1.
HD = (BC+AD)/2 (свойство равнобедренной трапеции) =>
Sabcd = HD*BH.
Sabcd = (2*R*Cos75+1)*2*R*Sin75. (1)
В четырехугольнике АОРD: <AOP = 360-2*75-90 = 120°. =>
<BOP = 180°-120° = 60°. =>
Треугольник ОВР - равносторонний и ВК - высота, биссектриса и медиана. КР = ОР/2 = R/2.
Проведем СТ параллельно ОР (перпендикулярно BQ).
CT =KP = R/2.
В прямоугольном треугольнике СТВ: <TCB = 15°.
СТ = ВС*Cos15°. => R/2 = Cos15°. => R = 2Cos15°.
Подставим это выражение в (1):
Sabcd = (2*2Cos15°*Cos75+1)*2*2Cos15°*Sin75.
Sabcd = (4Cos15°*Cos75+1)*4Cos15°*Sin75.
Дальше - сплошная тригонометрия.
Но подставив табличные значения, получим Sabcd ≈ 7,5 ед.
Если надо AD = AH+HD = 2RCos75+2RCos75+1 =
8Cos15*Cos75 +1 ≈ 3 ед.