В ромбе диагонали в точке пересечения делятся пополам. Таким образом Х² = (KR/2)² + (MN/2)². Отсюда Х = √{(KR/2)² + (MN/2)²} = √{(10/2)² + (12/2)²} = √(25+36) = √61
2) Площадь (S) трапеции равна произведению средней линии (Lср) трапеции на высоту (h) трапеции. Средняя линия трапеции равна половине суммы длин оснований, т.е. Lср = (QN + TM)/2 = (5 + 17)/2 =22/2 = 11. Теперь найдем высоту трапеции. h = S/Lср = 55/11 = 5.
См. рисунок. Из N опустим перпендикуляр на ТМ. Отсюда КМ = ТМ - КТ = 17 - 5 = 12 Тогда Х² = h² + КМ². Отсюда Х = √(h² + КМ²)= √(5²+ 12²) = √169 = 13
ответ: 1) Х =√61
2) х = 13
Объяснение: 1) Теорема Пифагора - квадрат гипотенузы равен сумме квадратов катетов.
В ромбе диагонали в точке пересечения делятся пополам. Таким образом Х² = (KR/2)² + (MN/2)². Отсюда Х = √{(KR/2)² + (MN/2)²} = √{(10/2)² + (12/2)²} = √(25+36) = √61
2) Площадь (S) трапеции равна произведению средней линии (Lср) трапеции на высоту (h) трапеции. Средняя линия трапеции равна половине суммы длин оснований, т.е. Lср = (QN + TM)/2 = (5 + 17)/2 =22/2 = 11. Теперь найдем высоту трапеции. h = S/Lср = 55/11 = 5.
См. рисунок. Из N опустим перпендикуляр на ТМ. Отсюда КМ = ТМ - КТ = 17 - 5 = 12 Тогда Х² = h² + КМ². Отсюда Х = √(h² + КМ²)= √(5²+ 12²) = √169 = 13
1)Пусть х см - a
(3х)см-b
S=ab
3x^2=27
x1=-3 -не удовлетворяет,так как <0
x2=3
а=3 см
b=9 см
ответ:3 см;9 см
2)Sквадрата=а^2
а^2=64 см
а=8 см
Р=а*4
Р=8*4=32 см
ответ:32 см
3)У ромба все стороны равны,а сторон 4.
Р=4*а
а=16:4
а=4 см
S=а*h(высота)
16=4*h
h=4 см
ответ:4 см
4)S=1/2 *AB(гипотенуза)*h(высота)
1/2*АВ*4=40
АВ=20 см
ответ:20 см
5)Так как трапеция прямоугл.,то большая сторона и является высотой
S=(ВС+AD)/2 *h(высота)
S=(5+13)/2*10
S=90 см^2
ответ:90 см^2
6)Сумма углов многоугольника равна 180*(n-2),где n-количество сторон
у нас сумма углов 180*3=540 градусов
Пусть х градусов приходится на одну часть
15х=36
х=36 градусов
36 градусов-первый угол
72 градусов-2 угол
108 градусов-3 угол
144 градуса-4 угол
180 градуса-5 угол
8)пусть 1 катет-х см, 2 катет-(х+2)
По теореме Пифагора находим х
х^2+x^2+4x+4=100
x^2+2x-48=0
D=49
x1=-8 - <0 не удовлетворяет
х2=6
1 катет-6 см
2 катет-8 см
Площадь прямоугольного треугольника равна половине произведения катетов.
S=6*8/2=24 кв.см.
ответ:24 кв.см.