Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
ответ:100 см²
Объяснение: В четырехугольник можно вписать окружность ( или круг) тогда и только тогда. когда суммы противоположных сторон равны.
Трапеция АВСD - четырехугольник. ⇒
ВС+АD=АВ+AD=14+11=25 (см).
Высота трапеции равна диаметру вписанной окружности. ⇒ ВН=2r=2•4=8
Площадь трапеции равна произведению высоты и полусуммы оснований.
S=h•(a+b)/2=8•25/2=100 см².
----------------------
Как видим, для нахождения площади отношение оснований трапеции является лишним. Но для нахождения длин сторон пригодится.
Примем коэффициент отношения ВС:АD равным а.
Тогда ВС=2а, АD=3а.
ВС+АD=5a=25 (см. выше). ⇒ а=5. ⇒
ВС=2•5=10 см
АD=3•5=15 см.