Kakts_06.png
в прямом двугранном угле дан отрезок ab так, что один конец отрезка находится в одной грани угла, а второй конец — в другой грани угла. расстояния от точек a и b до ребра угла aa1 = 16 cm, bb1 = 12 cm. длина отрезка a1b1 = 21 cm.
1. нарисуй соответствующий рисунок.
2. определи вид треугольников δaa1b1, δbb1a1, δab1b, δba1a.
3. рассчитай длину отрезка ab.
Sквадрата = d² / 2
d = √2S (всё под корнем)
d = √2*8 = √16 = 4
диагональ квадрата - 4 см
2) не уверена, но вроде можно так.
Дан ромб ABCD и AB=AC
Стороны ромба равны (по определению) AB=BC=CD=AD
Поэтому AB=BC=AC
Следовательно треугольник АВС равносторонний (правильный) (по определению равностороннего треугольника)
Все углы равностороннего треугольника равны 60 градусов, поэтому угол В равен 60 градусов (острый угол ромба)
Sромба = 1/2D² * tg(60°/2) = 1/2 * 10² * tg30 ° = 1/2 * 100 * √3/3 (дробь под корнем) = 50√3/3 (дробь под корнем)
я старалась :DDD
Объяснение:Трапеция АВСД, ВС=х, АД=2х, СД=АД/2=2х/2=х, уголД=60, АВ=6, проводим высоты ВН и СК на АД, треугольник КСД прямоугольный, КД=1/2СД=х/2, СК=СД*sin60=х*корень3/2=ВН, НВСК прямоугольник ВН=СК, ВС=НК=х, АН=АД-НК-КД=2х-х-х/2=х/2, треугольник АВН прямоугольный, АВ в квадрате=АН в квадрате+ВН в квадрате, 36=(х в квадрате/4)+(3*х в квадрате/4), 36=4*х в квадрате/4, х=6=СД, АВСД-равнобокая трапеция, АД=2*6=12, ВС=6, ВН=6*корень3/2=3*корень 3, площадь АВСД=1/2(ВС+АД)*ВН=1/2*(6+12)*3*корень 3=27*корень 3