Определяем параметры треугольника АВС, как части трапеции. Сумма квадратов сторон ВС и АС равна 400+225 = 625. Квадрат стороны АВ равен 25² = 625. Значит, треугольник АВС прямоугольный с катетами ВС и АС и гипотенузой АВ и прямым углом ВСА.
Чтобы треугольник второй части трапеции был подобен первому, значит, в нём угол Д должен быть прямым. Угол АСД равен углу ВАС.
Синус этого же угла равен sinACD = √(1-0,6²) = 0,8. Находим стороны: СД = 15*0,6 = 9 см, АД = 15*0,8 = 12 см.
Сторона АД является и высотой трапеции АВСД. S = ((25+9)/2)*12 = 17*12 = 204 см².
Допустим треугольник построен так, что угол А=90 градусов, тогда угол С=180-30-90=60 градусов.
Достроим наш треугольник до равностороннего: на прямой АС отложим отрезок АЕ, так, что он будет равен АС. Получим треугольник ЕВС, в котором АВ высота к стороне, которая делит сторону пополам, т.е. является еще и медианой(мы ее так построили). Она является так же и биссектрисой угла В в треугольнике ЕВС (это очевидно, т.к. треуг ЕВА=треуг АВС: АВ общая сторона, АЕ=АС по построению, а углы А между этими сторонами раны как смежные 180=90(из условия)+90(=180-90 из условия))
В треугольнике ЕВС угол С=60 градусов, угол В=60 градусов (т.к. АВ является биссектрисой, мы доказали это из равенства треугольников, то угол ЕВС=2Х30=60), значит угол Е=180-60-60=60 градусов, что означает, что ЕВС - равносторонний треугольник, т.е. ЕВ=ВС=СЕ, а СЕ=2ХАС по построению, т.е. СЕ=10Х2=20 см=ВС. Это ответ
Сумма квадратов сторон ВС и АС равна 400+225 = 625.
Квадрат стороны АВ равен 25² = 625. Значит, треугольник АВС прямоугольный с катетами ВС и АС и гипотенузой АВ и прямым углом ВСА.
Чтобы треугольник второй части трапеции был подобен первому, значит, в нём угол Д должен быть прямым.
Угол АСД равен углу ВАС.
Синус этого же угла равен sinACD = √(1-0,6²) = 0,8.
Находим стороны:
СД = 15*0,6 = 9 см,
АД = 15*0,8 = 12 см.
Сторона АД является и высотой трапеции АВСД.
S = ((25+9)/2)*12 = 17*12 = 204 см².
Допустим треугольник построен так, что угол А=90 градусов, тогда угол С=180-30-90=60 градусов.
Достроим наш треугольник до равностороннего: на прямой АС отложим отрезок АЕ, так, что он будет равен АС. Получим треугольник ЕВС, в котором АВ высота к стороне, которая делит сторону пополам, т.е. является еще и медианой(мы ее так построили). Она является так же и биссектрисой угла В в треугольнике ЕВС (это очевидно, т.к. треуг ЕВА=треуг АВС: АВ общая сторона, АЕ=АС по построению, а углы А между этими сторонами раны как смежные 180=90(из условия)+90(=180-90 из условия))
В треугольнике ЕВС угол С=60 градусов, угол В=60 градусов (т.к. АВ является биссектрисой, мы доказали это из равенства треугольников, то угол ЕВС=2Х30=60), значит угол Е=180-60-60=60 градусов, что означает, что ЕВС - равносторонний треугольник, т.е. ЕВ=ВС=СЕ, а СЕ=2ХАС по построению, т.е. СЕ=10Х2=20 см=ВС. Это ответ