Касательная MN(N точка касания) к окружности с центром О равна 14 см, угол NMO=45 градусов. Вычислите длину диаметра окружности и расстояние от её центра до касательной
пусть авса1в1с1 наклонная треугольая ее боковые грани--это грани ава1в1 равна 30,а площадь исчисляется по формуле s=ah, следовательно сторона равна 10 . а опущенная на нее высота h1=30/10=3.точно также с гранью всв1с1:
h2=40/10=4.получается что угол между этими высотами прямой.соединим основания высот,получается прямоугольный треугольник.находим его гипотенузу: 3 в квадрате + 4 в квадрате= 25, то есть гипотенуза равна 5.а это высота третьей грани.значит площадь третьей грани = 5*10=50.
площадь боковой поверхности равна 30+40+50=120 квад.метров
Угол правильного шестиугольника при вершине раравен 120 гр.
Периметр правильного треугольника, вписанного в окружность, равен 45 см. Следовательно сторона треугольника равна 15 см. По условию задачи каждой стороне треугольника соответствует две стороны шестиугольника. Вследствии чего нужно просто решить задачку с равнобедренным треугольником, основание которого 15 см, а угол вершины 120 гр. У таког треугольника углы при основнии равны (180-120)/2=30 гр. Опускаем высоту из угла 120 гр, получаем прямоугольный треугольник с углами
90; 60; 30 гр. Далее сos (30°) = cos (π/6) = (√3)/2, следовательно сторона шестиугольника, обозначим её как А=7,5*сos (30°)=7,5*(√3)/2 см.
пусть авса1в1с1 наклонная треугольая ее боковые грани--это грани ава1в1 равна 30,а площадь исчисляется по формуле s=ah, следовательно сторона равна 10 . а опущенная на нее высота h1=30/10=3.точно также с гранью всв1с1:
h2=40/10=4.получается что угол между этими высотами прямой.соединим основания высот,получается прямоугольный треугольник.находим его гипотенузу: 3 в квадрате + 4 в квадрате= 25, то есть гипотенуза равна 5.а это высота третьей грани.значит площадь третьей грани = 5*10=50.
площадь боковой поверхности равна 30+40+50=120 квад.метров
подробнее - на -
Угол правильного шестиугольника при вершине раравен 120 гр.
Периметр правильного треугольника, вписанного в окружность, равен 45 см. Следовательно сторона треугольника равна 15 см. По условию задачи каждой стороне треугольника соответствует две стороны шестиугольника. Вследствии чего нужно просто решить задачку с равнобедренным треугольником, основание которого 15 см, а угол вершины 120 гр. У таког треугольника углы при основнии равны (180-120)/2=30 гр. Опускаем высоту из угла 120 гр, получаем прямоугольный треугольник с углами
90; 60; 30 гр. Далее сos (30°) = cos (π/6) = (√3)/2, следовательно сторона шестиугольника, обозначим её как А=7,5*сos (30°)=7,5*(√3)/2 см.
А=7,5*(√3)/2=(15/4)*√3 см.