перейде точка À точка C. 2) на кут 120° протигодинникової стрілки. перейде точка E точкаB. 1088. Дано відрізок і точку O, яка ал. 214. йому не належить.
Äî § 21 ГЕОМЕТРІ ЕРЕТВОРЕ 1087. –правильний шестикутник (мал. 214). У якуточку при повороті навколо точки O: 1) на кут60° за годинниковою стрілкою перейде точкаÀ точка C 2) на кут 120° проти годинниковоїстрілки перейде точка E точка B 1088. Дано відрізок і точку O, яка ал. 214 йому не належить. Побудуйте відрізок A′B′, у якийперейде відрізок при повороті навколо точкиO: 1) на 90° проти годинникової стрілки 2) на 20° за годинник
сумма углов, примыкающих к стороне, равна 180 градусам, поэтому сумма их половин, отсекаемых биссектрисами, равна 90 градусам. отсюда следует, что efgh -- прямоугольник, и сумма квадратов его сторон равна удвоенному квадрату диагонали.
пусть e -- точка пересечения биссектрис углов a и d. середина k стороны ad равноудалена от вершин прямоугольного треугольника ade. при этом угол ked равен kde, а также cde, поэтому ke параллельна cd и является частью средней линии kl параллелограмма. на этой же линии лежит и точка g из аналогичных соображений.
таким образом, eg=kl−ke−gl=ab−1\2ad−1\2bc=ab−ad=3\2 есть длина диагонали. следовательно, в ответе получится 2(3\2)2=9\2.
перейде точка À точка C. 2) на кут 120° протигодинникової стрілки. перейде точка E точкаB. 1088. Дано відрізок і точку O, яка ал. 214. йому не належить.
Äî § 21 ГЕОМЕТРІ ЕРЕТВОРЕ 1087. –правильний шестикутник (мал. 214). У якуточку при повороті навколо точки O: 1) на кут60° за годинниковою стрілкою перейде точкаÀ точка C 2) на кут 120° проти годинниковоїстрілки перейде точка E точка B 1088. Дано відрізок і точку O, яка ал. 214 йому не належить. Побудуйте відрізок A′B′, у якийперейде відрізок при повороті навколо точкиO: 1) на 90° проти годинникової стрілки 2) на 20° за годинник
ответ:
сумма углов, примыкающих к стороне, равна 180 градусам, поэтому сумма их половин, отсекаемых биссектрисами, равна 90 градусам. отсюда следует, что efgh -- прямоугольник, и сумма квадратов его сторон равна удвоенному квадрату диагонали.
пусть e -- точка пересечения биссектрис углов a и d. середина k стороны ad равноудалена от вершин прямоугольного треугольника ade. при этом угол ked равен kde, а также cde, поэтому ke параллельна cd и является частью средней линии kl параллелограмма. на этой же линии лежит и точка g из аналогичных соображений.
таким образом, eg=kl−ke−gl=ab−1\2ad−1\2bc=ab−ad=3\2 есть длина диагонали. следовательно, в ответе получится 2(3\2)2=9\2.
объяснение: