4 точки не лежат на одной плоскости. Это значит, через них нельзя провести плоскость. Если прямая соединяет две любые точки, то другая прямая, соединяющая другие две точки обязана быть скрещивающейся, так как в противном случае через эти две прямые можно было бы провести плоскость и 4 точки лежали бы в одной плоскости. То есть, если прямая соединяет две точки, то прямая, соединяющая другие две точки будет с ней скрещивающейся.
Итак, ответ - для АВ скрещивающаяся - СD, для DC - АВ. Впрочем, это одна и та же пара. В этой задаче есть еще одна пара скрещивающихся прямых. ВС скрещивается с АD.
Пусть точка С расположена между точками D и Е, то есть С ближняя к точке Е, а В дальняя от точки Е вершины треугольника АВС. Угол АВС - вписанный в окружность, он измеряется половиной дуги АС. Угол ЕАС - угол между хордой и касательной, он тоже измеряется половиной дуги АС. Значит (угол ЕАС) =(угол АВС) . Так, как АD биссектриса угла ВАС, то (угол ВАD)=(угол DАС) . (Угол ЕАD)=(угол ЕАС) +(угол CAD), (угол АDE)=(угол АВD)+(угол BAD) как внешний угол треугольника АВD. Значит (угол ЕАD)=(угол АDЕ) . Отсюда следует, что треугольник ЕАD равнобедренный, и АЕ=ЕD.
Итак, ответ - для АВ скрещивающаяся - СD, для DC - АВ. Впрочем, это одна и та же пара. В этой задаче есть еще одна пара скрещивающихся прямых. ВС скрещивается с АD.
(Угол ЕАD)=(угол ЕАС) +(угол CAD), (угол АDE)=(угол АВD)+(угол BAD) как внешний угол треугольника АВD. Значит (угол ЕАD)=(угол АDЕ) . Отсюда следует, что треугольник ЕАD равнобедренный, и АЕ=ЕD.