Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон: ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда CH1=6CH:5 В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС: АС²=AH1²+CH1² Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид: СН1=3АС:5. Это значение для СH1 будем использовать в вычислении по теореме Пифагора: АС²=12² + 9AC²/25 AC² - 9AC²/25=144 16AC²=3600 AC² = 225 AC=15 см S ABC = 1/2AC*BH=7,5*10=75 см²
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
S ABC = 1/2AC*BH=7,5*10=75 см²
1)Т.к. диагональ BD вдвое больше стороны АВ, следовательно АВ=ВО=OD, следовательно треугольник АВО равнобедренный
2)угол АОD=112 градусов, по условию, тогда угол ВОА=180-АОD=180-112=68градусов(по свойству смежного угла)
3)т.к. треугольник АВО- равнобедренный, следовательно углы при основании равны, тогда угол ВАО=ВОА=68градусов
4)угол CAD= 40градусов по условию, тогда угол BAD=BAO+CAD=68+40=108 градусов
5)угол CDA=180-BAD=180-108=72градуса(по свойству односторонних углов в параллелограмме)
ответ:4(72градуса)