Ага Итак, NK=BK=. Значит, DK=2NK=2. Считаем площадь равнобедренного ADC==6. Получаем, наконец, площадь полной поверхности: 3+3*6=21 (площадь основания плюс площади трех боковых граней). Переходим к объему. Объем пирамиды равен одной трети произведения площади основания на высоту. В нашем случае это площадь ABC, а высота - DN. Найдем DN по теореме Пифагора из знакомого нам DNK. DN=. И наконец, V=9 Уффф. Извини, что так долго ждать заставил - замучился формулы писать. Перепроверь подсчеты, а в остальном - как-то так.
Построим равнобедренный треугольник АВС с основанием АС. Проведем медиану ВД. Так как средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине боковое ребро (АВ) будет равно 13*2=26 см Медиана проведенная к основанию равнобедренного треугольника является также и высотой. Зная это по теореме Пифагора найдем половину основания: АД^2=АВ^2-ВД^2=26^2-24^2=676-576=100 АД=10 см А так как средняя линия равна половине параллельной стороны, то искомая средняя линия будет равна 10 см
Итак, NK=BK=. Значит, DK=2NK=2. Считаем площадь равнобедренного ADC==6. Получаем, наконец, площадь полной поверхности: 3+3*6=21 (площадь основания плюс площади трех боковых граней).
Переходим к объему. Объем пирамиды равен одной трети произведения площади основания на высоту. В нашем случае это площадь ABC, а высота - DN. Найдем DN по теореме Пифагора из знакомого нам DNK. DN=. И наконец, V=9
Уффф. Извини, что так долго ждать заставил - замучился формулы писать. Перепроверь подсчеты, а в остальном - как-то так.
Так как средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине боковое ребро (АВ) будет равно 13*2=26 см
Медиана проведенная к основанию равнобедренного треугольника является также и высотой.
Зная это по теореме Пифагора найдем половину основания:
АД^2=АВ^2-ВД^2=26^2-24^2=676-576=100
АД=10 см
А так как средняя линия равна половине параллельной стороны, то искомая средняя линия будет равна 10 см