1. Касательные проведнные с одной точки равны между собой, поэтому
AC = AB = 12 см.
По теореме Пифагора
AO=корень(CO^+AC^2)=корень(9^2+12^2)=15 см
ответ: 12 см, 15 см
2. Извини, но незнаю
3. Хорды MN и PK пересекаются в точке E так, что ME = 12 см, NE = 3 см, PE = KE. Найдите PK.
По свойству хорд
ME*NE=PE*KE
Пусть PE = KE=х см
Тогда x^2=12*3=36
x>0, поєтому х=6 см
PK=PE+KE=6см+6см=12 см
ответ:12 см
4.Треугольник ОАВ равнобедренный, ОА=ОВ=16 см (радиусы);
∠А=∠В=30° - по условию;
ОН - высота ОАВ, равна 16/2=8 см (катет против угла 30°);
АВ=2*АН=2*√(16²-8²)=16√3 см.
Треугольник СОВ равнобедренный, ОС=ОВ=16 см (радиусы);
∠С=∠В=45° ⇒ ∠О=90° - прямоугольный ⇒ СВ=√(16²+16²)=16√2 см.
АВ=16√3 см;
ВС=16√2 см.
11.
Дано:
ΔАВС - равнобедренный
АС = ВС = 13
АВ = 10
Найти:
АС - высоту. опущенную на боковую сторону
СD - высота равнобедренного треугольника. опущенная на основание, является и медианой. Поэтому AD = BD = 0.5AB = 0.5 · 10 = 5.
АС² = CD² + AD²
13² = CD² + 5²
CD² = 13² - 5² = 144 = 12²
CD = 12
Площадь треугольника АВС
S = 0.5 CD · AB = 0.5 · 12 · 10 = 60
Площадь треугольника АВС можно также вычислить и так:
S = 0.5 BC · AE
откуда
АЕ = 2S : BC = 2 · 60 : 13 = 9 ≈ 9.23
АЕ = 9 ≈ 9.23
12.
MKNR - ромб
KR = 10 - 1-я диагональ ромба
MN = 12 - 2-я диагональ ромба
МК - сторону ромба
Пусть О - точка пересечения диагоналей ромба.
Диагонали ромба делятся точкой пересечения пополам, поэтому
КО = 0,5 KR = 0.5 · 10 = 5
МО = 0,5 MN = 0.5 · 12 = 6
Диагонали ромба пересекаются под прямым углом, поэтому
КО ⊥ МО и ΔМКО - прямоугольный с гипотенузой МК.
МК² = КО² + МО²
МК² = 5² + 6² = 61
МК = √61 ≈ 7,81
Сторона ромба МК =√61 ≈ 7,81
1. Касательные проведнные с одной точки равны между собой, поэтому
AC = AB = 12 см.
По теореме Пифагора
AO=корень(CO^+AC^2)=корень(9^2+12^2)=15 см
ответ: 12 см, 15 см
2. Извини, но незнаю
3. Хорды MN и PK пересекаются в точке E так, что ME = 12 см, NE = 3 см, PE = KE. Найдите PK.
По свойству хорд
ME*NE=PE*KE
Пусть PE = KE=х см
Тогда x^2=12*3=36
x>0, поєтому х=6 см
PK=PE+KE=6см+6см=12 см
ответ:12 см
4.Треугольник ОАВ равнобедренный, ОА=ОВ=16 см (радиусы);
∠А=∠В=30° - по условию;
ОН - высота ОАВ, равна 16/2=8 см (катет против угла 30°);
АВ=2*АН=2*√(16²-8²)=16√3 см.
Треугольник СОВ равнобедренный, ОС=ОВ=16 см (радиусы);
∠С=∠В=45° ⇒ ∠О=90° - прямоугольный ⇒ СВ=√(16²+16²)=16√2 см.
АВ=16√3 см;
ВС=16√2 см.
11.
Дано:
ΔАВС - равнобедренный
АС = ВС = 13
АВ = 10
Найти:
АС - высоту. опущенную на боковую сторону
СD - высота равнобедренного треугольника. опущенная на основание, является и медианой. Поэтому AD = BD = 0.5AB = 0.5 · 10 = 5.
По теореме Пифагора
АС² = CD² + AD²
13² = CD² + 5²
CD² = 13² - 5² = 144 = 12²
CD = 12
Площадь треугольника АВС
S = 0.5 CD · AB = 0.5 · 12 · 10 = 60
Площадь треугольника АВС можно также вычислить и так:
S = 0.5 BC · AE
откуда
АЕ = 2S : BC = 2 · 60 : 13 = 9 ≈ 9.23
АЕ = 9 ≈ 9.23
12.
Дано:
MKNR - ромб
KR = 10 - 1-я диагональ ромба
MN = 12 - 2-я диагональ ромба
Найти:
МК - сторону ромба
Пусть О - точка пересечения диагоналей ромба.
Диагонали ромба делятся точкой пересечения пополам, поэтому
КО = 0,5 KR = 0.5 · 10 = 5
МО = 0,5 MN = 0.5 · 12 = 6
Диагонали ромба пересекаются под прямым углом, поэтому
КО ⊥ МО и ΔМКО - прямоугольный с гипотенузой МК.
По теореме Пифагора
МК² = КО² + МО²
МК² = 5² + 6² = 61
МК = √61 ≈ 7,81
Сторона ромба МК =√61 ≈ 7,81