Объяснение:Для решения задачи воспользуемся следующей теоремой:
Для выпуклого n-угольника сумма углов равна 180°(n-2).
Таким образом, сумма углов равнобокой (равнобедренной) трапеции равна:
180 ( 4 - 2) = 360 градусов.
Исходя из свойств равнобокой трапеции о том, что ее углы попарно равны, обозначим одну пару углов как х. Поскольку один угол на 30 градусов больше второго, то сумма углов равнобокой трапеции равна:
ответ: 75 и 105
Объяснение:Для решения задачи воспользуемся следующей теоремой:
Для выпуклого n-угольника сумма углов равна 180°(n-2).
Таким образом, сумма углов равнобокой (равнобедренной) трапеции равна:
180 ( 4 - 2) = 360 градусов.
Исходя из свойств равнобокой трапеции о том, что ее углы попарно равны, обозначим одну пару углов как х. Поскольку один угол на 30 градусов больше второго, то сумма углов равнобокой трапеции равна:
х + (х + 30) + х + ( х + 30 ) = 360
4х + 60 = 360
х = 75
ответ: углы равнобокой (равнобедренной) трапеции равны 75 и 105 градусов попарно
Дано уравнение параболы 5x^2-7x-2y-4=0
Выделяем полные квадраты:
5(x²-2·(7/10)x + (7/10)²) -5·(7/10)² = 5(x-(7/10))²- (49/20)
Преобразуем исходное уравнение:
Получили уравнение параболы:
(x - x0)² = 2p(y - y0) .
(x-(7/10))² = 2·(1/5)(y - (-129/40)) .
Ветви параболы направлены вверх (p>0), вершина расположена в точке (x0, y0), то есть в точке ((7/10); (-129/40)) .
Параметр p = 1/5.
Координаты фокуса: (xo; yo+(p/2)) = (7/10); (-125/40)).
Уравнение директрисы: y = y0 - p/2
y = (-129/40) - (1/10) = (-133/40 ).
Параметры кривой более подробно даны во вложении.