катети прямокутного трикутника дорівнюють 15 і 20 см.з вершини кут C=90 проведено відрізок MC,що перпендикулярний до площини цього трикутника,MC=35 см.Знайти відстань відстань від його кінців до більшої сторони
Пирамида правильная, следовательно, в основании лежит правильный треугольник. Площадь полной поверхности - площадь основания+площадь боковой поверхности. Площадь основания S(o) вычислим по формуле: S=(а²√3):4 S(о)=(9√3):4 Площадь боковой поверхности Sб - по формуле Sб=Р*(апофема):2 Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/ Апофему МН найдем из прямоугольного треугольника МОН. Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2 МО=ОН. ОН=r=(3√3):6=(√3):2 МН=(√3):2)*√2=(√3*√2):2 Р=3*3=9 Sб=9*(√3*√2):2):2=9*(√3*√2):4 см² Sполн=(9√3):4+(9*√3*√2):4 Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см² ---- bzs*
1) квадрат и треугольник взаимно перпендикулярны, значит, ВС перпендикулярна плоскости треугольника АМВ, следовательно ВС перпендикулярна любой прямой лежащей в плоскости АМВ, а значит, перпендикулярна и АМ.
2)проведём высоту МК в треугольнике АМВ. Так как треугольник равнобедренный, то высота является и медианой, поэтому АК=КВ=4:2=2
из прямоугольного треугольника МКВ МК^2=MB^2-BK^2=(2 корень из6)^2-4=4*6-4=20
из прямоугольного треугольника КВС КС^2=KB^2+BC^2=2^2+4^2=4+16=20
треугольник МКС равнобедренный значит угол КМС=углу МСК, угол МКС=90градусов так как МК перпендикулярна к плоскости квадрата, поэтому угол между МС и плоскостью квадрата равен 90градусов :2=45 градусов
Площадь полной поверхности - площадь основания+площадь боковой поверхности.
Площадь основания S(o) вычислим по формуле:
S=(а²√3):4
S(о)=(9√3):4
Площадь боковой поверхности Sб - по формуле
Sб=Р*(апофема):2
Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/
Апофему МН найдем из прямоугольного треугольника МОН.
Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2
МО=ОН.
ОН=r=(3√3):6=(√3):2
МН=(√3):2)*√2=(√3*√2):2
Р=3*3=9
Sб=9*(√3*√2):2):2=9*(√3*√2):4 см²
Sполн=(9√3):4+(9*√3*√2):4
Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см²
----
bzs*
1) квадрат и треугольник взаимно перпендикулярны, значит, ВС перпендикулярна плоскости треугольника АМВ, следовательно ВС перпендикулярна любой прямой лежащей в плоскости АМВ, а значит, перпендикулярна и АМ.
2)проведём высоту МК в треугольнике АМВ. Так как треугольник равнобедренный, то высота является и медианой, поэтому АК=КВ=4:2=2
из прямоугольного треугольника МКВ МК^2=MB^2-BK^2=(2 корень из6)^2-4=4*6-4=20
из прямоугольного треугольника КВС КС^2=KB^2+BC^2=2^2+4^2=4+16=20
треугольник МКС равнобедренный значит угол КМС=углу МСК, угол МКС=90градусов так как МК перпендикулярна к плоскости квадрата, поэтому угол между МС и плоскостью квадрата равен 90градусов :2=45 градусов