Если точка C лежит на оси абсцисс и равноудалена от точек A и B, то она принадлежит перпендикуляру, проведенному из середины отрезка АВ до пересечения с осью Ох. Уравнение прямой АВ: (х+1)/(3+1) = у(-3)/(8-2), АВ: 6х + 6 = 4у - 8. Получаем уравнение прямой АВ с коэффициентом: у = (6х + 14)/4 = (3/2)х + (7/2). Находим координаты точки Д - середины отрезка АВ: Д(-1+3)/2=1; (2+8)/2=5) = (1; 5). Уравнение перпендикуляра ДС, проведенного из середины отрезка АВ, имеет коэффициент перед х, равный (-1/к), где к - это коэффициент прямой АВ. ДС: у = (-2/3)х + в. Для определения параметра в подставим известные координаты точки Д: 5 = (-2/3)*1 + в. Отсюда в = 5 + (2/3) = 17/3. Уравнение ДС: у = (-2/3)х + (17/3). Абсцисса точки С определится при подстановке в уравнение прямой ДС у = 0. 0 = (-2/3)х + (17/3), отсюда х = (17/3)/(2/3) = 17/2 = 8,5.
6. Дано: ΔАВС, СР-биссектриса, АР=4 см, ВР=5 см
Найти: Периметр ΔАВС
1. СР- биссектриса ΔАВС => АР:ВР=АС:ВС
4:5=10:ВС
ВС=(5*10):4=12,5 (см)
2. Р(АВС)=АВ+ВС+АС=(АР+ВР)+ВС+АС
Р(АВС)=4+5+12,5+10= 31,5 (см)
ответ: 31,5 см
Объяснение:
7. Позначимо ромба АВСD, АВ = 5см, О - точка перетину діагоналей АС і ВD, АС = 6см. Знайти висоту АК
Розв"язання:
Діагоналі ромба рівні, звідси, АО = СО = АС/2=6/2=3, ВО = ОD
З прямокутного трикутника АВО( кут АОВ = 90 градусів):
За т. Піфагора
Звідси, діагональ ВD = 2ВО = 2*4= 8см.
Знаходимо полщу ромба
Тоді висота ромба дорівнює:
Відповідь: 4.8 см.
Уравнение прямой АВ: (х+1)/(3+1) = у(-3)/(8-2),
АВ: 6х + 6 = 4у - 8.
Получаем уравнение прямой АВ с коэффициентом:
у = (6х + 14)/4 = (3/2)х + (7/2).
Находим координаты точки Д - середины отрезка АВ:
Д(-1+3)/2=1; (2+8)/2=5) = (1; 5).
Уравнение перпендикуляра ДС, проведенного из середины отрезка АВ, имеет коэффициент перед х, равный (-1/к), где к - это коэффициент прямой АВ.
ДС: у = (-2/3)х + в.
Для определения параметра в подставим известные координаты точки Д:
5 = (-2/3)*1 + в.
Отсюда в = 5 + (2/3) = 17/3.
Уравнение ДС: у = (-2/3)х + (17/3).
Абсцисса точки С определится при подстановке в уравнение прямой ДС у = 0.
0 = (-2/3)х + (17/3), отсюда х = (17/3)/(2/3) = 17/2 = 8,5.