Катеты прямоугольного треугольника АВС (Кут С = 90) равны 6 см и 8см.Точка Д удалена от каждой вершины на 13см. Найдите расстояние от точки Д ДО плоскости АВС
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
76°
Объяснение:
Признак равнобедренного треугольника: если в треугольнике два угла равны, то такой треугольник - равнобедренный.
1) Рассмотрим ΔАСВ.
∠С =28°, ∠А = ∠В по условию. Т.к. сумма углов 28° Δ-ка равна 180°, то?
∠А + ∠В + ∠С = 180°, откуда
∠А + ∠В = 180° - ∠С = 180° - 28° = 152°. Но ∠А = ∠В по условию, следовательно,
∠А = ∠В = 152°/2 = 76°
2) т.к. ∠А = ∠В , а АА₁ и ВВ₁ - биссектрисы этих углов, то
∠В₁АО = ∠ОАВ = ∠А₁ВО=∠ОВА = 76°/2 = 38°
3) Рассмотрим ΔАОВ.
∠ОАВ = ∠ОВА =38°, тогда
∠АОВ = 180° -2*38° = 180° -76° = 104°
4) ∠АОВ и ∠АОВ₁ - смежные углы, их сумма = 180°, значит,
∠АОВ₁ = 180°-104° = 76°
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).