если внутренние накрест лежащие углы равны, то прямые параллельны.
если соответственные углы равны, то прямые параллельны.если сумма внутренних односторонних углов равна 180, то прямые параллельны.следствие: две прямые, перпендикулярные третьей, параллельны. свойства параллельных прямых
теорема 2. две прямые, параллельные третьей, параллельны.
это свойство называется транзитивностью параллельности прямых.
теорема 3. через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
теорема 4. если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.
на основании этой теоремы легко обосновываются следующие свойства.
если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180. следствие если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Диагональ трапеции перпендикулярна к ее основаниям; тупой угол, прилежащий к большему основанию, равен 120, а боковая сторона, которая прилегает к нему, равна 7 см. Определить среднюю линию трапеции, если ее большая сторона равна 12 см. Трапеция АВСД: диагональ АС⊥АД, АС⊥ВС, угол А=120°, АВ=7, СД=12 (большая сторона в ΔАСД)<А=<ВАС+<САД, откуда <ВАС=120-90=30°Из прямоугольного ΔАВС: ВС=АВ/2=7/2=3,5 (катет против угла в 30° равен половине гипотенузы)АС=АВ*сos 30=7*√3/2=3,5√3Из прямоугольного ΔАСД: АД²=СД²-АС²=144-36,75=107,25АД=0,5√429Средняя линия равна (ВС+АД)/2=(3,5+0,5√429)/2=1,75+0,25√429≈6,9
теорема 1. признак параллельности прямых
если внутренние накрест лежащие углы равны, то прямые параллельны.
если соответственные углы равны, то прямые параллельны.если сумма внутренних односторонних углов равна 180, то прямые параллельны.следствие: две прямые, перпендикулярные третьей, параллельны. свойства параллельных прямыхтеорема 2. две прямые, параллельные третьей, параллельны.
это свойство называется транзитивностью параллельности прямых.
теорема 3. через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
теорема 4. если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.
на основании этой теоремы легко обосновываются следующие свойства.
если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180. следствие если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.Трапеция АВСД: диагональ АС⊥АД, АС⊥ВС, угол А=120°, АВ=7, СД=12 (большая сторона в ΔАСД)<А=<ВАС+<САД, откуда <ВАС=120-90=30°Из прямоугольного ΔАВС: ВС=АВ/2=7/2=3,5 (катет против угла в 30° равен половине гипотенузы)АС=АВ*сos 30=7*√3/2=3,5√3Из прямоугольного ΔАСД: АД²=СД²-АС²=144-36,75=107,25АД=0,5√429Средняя линия равна (ВС+АД)/2=(3,5+0,5√429)/2=1,75+0,25√429≈6,9