Геометрически сумма двух векторов,имеющих общее начало, равна длине диагонали параллелограмма,который они образуют ( правило паралллелограмма).А длина этой диагонали равна площади этого же параллелограмма, то есть |a+b|=|a|*|b|*sin30° = 0,5*|a|*|b|.
Теперь сложим вектор а+в и вектор с аналогично.
Площадь построенного параллелограмма на векторах (а+в) и с равна
Первый треугольник h -высота v и w - углы треугольника
второй треугольник h1 - высота v1 и w1 - углы треуг.
h=h1 v=v1 w=w1
Рассмотрим 1 треугольник: Высота делит его на два прямоугольных треугольника, назовем их а и б. рассмотрим треугольник а: нам известен его катет (который является высотой начального треугольника) и угол v (который является общим у треугольника а и начального треуг.) нам нужно узнать неизвестный угол прямоугольного треугольника а. Нам известен угол v, поэтому неизвестный нам угол равен 90-v. Таким же образом во втором начальном треугольнике высота делит треугольник на два прямоугольных треуг а1 и б1. Находим неизвестный угол он будет равен 90-v1, а т.к. v=v1 то неизвестные нам углы равны. соответственно треугольник а равен треуг а1, по второму признаку равенства треугольников (если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны).
Таким же образом доказываем что треугольники б и б1 равны.
Из этих двух доказательств следует что гипотенузы треугольников а и а1 равны, и гипотенузы треугольников б и б1 тоже равны, а эти гипотенузы являются сторонами начального треугольника. Третья сторона равна каждого из этих треугольников равна, сумме катетов прямоугольных треугольников а и б (а1 и б1), и соответственно третьи стороны данных треугольников тоже равны, следовательно первый и второй треугольники равны по трем сторонам
Геометрически сумма двух векторов,имеющих общее начало, равна длине диагонали параллелограмма,который они образуют ( правило паралллелограмма).А длина этой диагонали равна площади этого же параллелограмма, то есть |a+b|=|a|*|b|*sin30° = 0,5*|a|*|b|.
Теперь сложим вектор а+в и вектор с аналогично.
Площадь построенного параллелограмма на векторах (а+в) и с равна
|a+b|*|c|*sin 30=o,5*|a|*|b|*|c|*0,5=0,25*|a|*|b|*|c|.
Этому же числу будет равна длина вектора (а+в+с).
Чёрточки над векторами поставь сама.
h -высота
v и w - углы треугольника
второй треугольник
h1 - высота
v1 и w1 - углы треуг.
h=h1
v=v1
w=w1
Рассмотрим 1 треугольник: Высота делит его на два прямоугольных треугольника, назовем их а и б. рассмотрим треугольник а: нам известен его катет (который является высотой начального треугольника) и угол v (который является общим у треугольника а и начального треуг.) нам нужно узнать неизвестный угол прямоугольного треугольника а. Нам известен угол v, поэтому неизвестный нам угол равен 90-v. Таким же образом во втором начальном треугольнике высота делит треугольник на два прямоугольных треуг а1 и б1. Находим неизвестный угол он будет равен 90-v1, а т.к. v=v1 то неизвестные нам углы равны. соответственно треугольник а равен треуг а1, по второму признаку равенства треугольников (если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны).
Таким же образом доказываем что треугольники б и б1 равны.
Из этих двух доказательств следует что гипотенузы треугольников а и а1 равны, и гипотенузы треугольников б и б1 тоже равны, а эти гипотенузы являются сторонами начального треугольника. Третья сторона равна каждого из этих треугольников равна, сумме катетов прямоугольных треугольников а и б (а1 и б1), и соответственно третьи стороны данных треугольников тоже равны, следовательно первый и второй треугольники равны по трем сторонам