Площадь трапеции равна средней линии умноженной на высоту. Т.е если ввести обозначения: a — нижнее основание b — верхнее основание с — средняя линия d — боковая сторона h — высота S — площадь трапеции P — периметр трапеции, тогда получаем: S=c*h, с=(a+b)/2 (средняя линия равна полусумме оснований). Тогда получаем: S=(a+b)*h/2 Отссюда h=2*S/(a+b) Теперь напишем формулу для периметра: P=a+b+2*d, отсюда a+b=P-2*d Подставляем эту формулу в формулу h=2*S/(a+b) и получаем: h=2*S/(P-2*d)=2*44/(32-2*5)=4 если благодарность
1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу. h=sqrt 2*8= 4 Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20 sqrt-корень с-гипотенуза 2) Тангенс по определению отношение катетов. Там дробь, но она сокращена. По теореме Пифагора. Сумма квадратов катетов равна квадрату гипотенузы. Чтобы получилось 51^2 8 и 15 - мало 16 и 25 - мало 24 и 45 - как раз. 24^2+45^2=51^2 576+2025=2601 ответ: 24 и 45
a — нижнее основание
b — верхнее основание
с — средняя линия
d — боковая сторона
h — высота
S — площадь трапеции
P — периметр трапеции,
тогда получаем:
S=c*h, с=(a+b)/2 (средняя линия равна полусумме оснований). Тогда получаем:
S=(a+b)*h/2
Отссюда h=2*S/(a+b)
Теперь напишем формулу для периметра:
P=a+b+2*d, отсюда
a+b=P-2*d
Подставляем эту формулу в формулу h=2*S/(a+b) и получаем:
h=2*S/(P-2*d)=2*44/(32-2*5)=4 если благодарность
h=sqrt 2*8= 4
Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20
sqrt-корень
с-гипотенуза
2) Тангенс по определению отношение катетов.
Там дробь, но она сокращена.
По теореме Пифагора.
Сумма квадратов катетов равна квадрату гипотенузы.
Чтобы получилось 51^2
8 и 15 - мало
16 и 25 - мало
24 и 45 - как раз.
24^2+45^2=51^2
576+2025=2601
ответ: 24 и 45