два равнобедренных треугольника имеют равные углы при основаниях, значит эти треугольники подобны за признаком пообия по двум углам (+свойству углов равнобедренного треугольника, углы при основании равнобедренного треугольника равны)
поскольку треугольник подобны, и основание и боковая сторона первого треугольника относятся как 6/5, то основание и боковая сторона второго треугольника относятся как 6/5
пусть боковая сторона второго равна 5х, тогда основание равно 6х, по условию задачи составляем уравнение
два равнобедренных треугольника имеют равные углы при основаниях, значит эти треугольники подобны за признаком пообия по двум углам (+свойству углов равнобедренного треугольника, углы при основании равнобедренного треугольника равны)
поскольку треугольник подобны, и основание и боковая сторона первого треугольника относятся как 6/5, то основание и боковая сторона второго треугольника относятся как 6/5
пусть боковая сторона второго равна 5х, тогда основание равно 6х, по условию задачи составляем уравнение
5х+5х+6х=48
16х=48
х=48\16
х=3
5х=5*3=15
6х=6*3=18
ответ: 5см, 5см, 6 см
Пусть дан треугольник ABC и медианы AK и СМ, AK перпендикулярна CM, т. О – точка пересечения медиан
Медианы в точке пересечения делятся в отношении 2:1, считая от вершины
Пусть x- коэффициент пропорциональности, тогда
2x+x=12 => 3x=12 =>x=4 => AO=8,OK=4
2x+x=9 => 3x=9 => x=3 => СO=6,OM=3
Из прямоугольного треугольника AOC:
(AC)^2=(AO)^2+(CO)^2=8^2+6^2=64+36=100
AC=10
Из прямоугольного треугольника AOM:
(AM)^2=(AO)^2+(OM)^2=8^2+3^2=64+9=73
AM=sqrt(73)
AM=MB
AB=2sqrt(73)
Из прямоугольного треугольника COK
(CK)^2= (CO)^2+(OK)^2=6^2+4^2=36+16=52
CK=sqrt(52)
CK=KB
CB=2sqrt(52)=4sqrt(13)
То есть стороны равны:
AC=10
AB=2sqrt(73)
CB=4sqrt(13)