ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
Прямая призма - это призма, у которой боковые ребра перпендикулярны основанию.
Т.к. в основании лежит четырехугольник, то он может быть либо прямоугольником, либо параллелограммом, либо - трапецией (ромбом и квадратом быть не может, т.к. стороны основания не равны по условию).
Если в основании лежит трапеция, то данных задачи не хватает и решить ее нельзя.
Поэтому будем считать, что в основании прямоугольник или параллелограмм, у которых противоположные стороны равны - в этом случае задача решается однозначно.
Площадь боковой поверхности вычисляют по формуле
Sбок = Pосн · h, где Pосн - периметр основания, h - высота призмы.
Т.к. в основании призмы четырехугольник (мы выяснили - прямоугольник или параллелограмм), то его периметр находят по формуле Росн = 2(а + b), где a и b - стороны четырехугольника.
ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение:
Прямая призма - это призма, у которой боковые ребра перпендикулярны основанию.
Т.к. в основании лежит четырехугольник, то он может быть либо прямоугольником, либо параллелограммом, либо - трапецией (ромбом и квадратом быть не может, т.к. стороны основания не равны по условию).
Если в основании лежит трапеция, то данных задачи не хватает и решить ее нельзя.
Поэтому будем считать, что в основании прямоугольник или параллелограмм, у которых противоположные стороны равны - в этом случае задача решается однозначно.
Площадь боковой поверхности вычисляют по формуле
Sбок = Pосн · h, где Pосн - периметр основания, h - высота призмы.
Т.к. в основании призмы четырехугольник (мы выяснили - прямоугольник или параллелограмм), то его периметр находят по формуле Росн = 2(а + b), где a и b - стороны четырехугольника.
Поэтому Sбок = 2(3 + 4) · 6 = 2 · 7 · 6 = 84 (cм²).
Площадь полной поверхности призмы находят по формуле
Sполн = 2Sосн + Sбок.
В случае, если в основании лежит параллелограмм, то не хватает данных для нахождения площади параллелограмма.
Если же в основании лежит прямоугольник, то Sосн = ab, где a и b - его стороны.
Поэтому Sполн = 2 · 3 · 4 + 84 = 24 + 84 = 108 (см²).