В равностороннем треугольнике все углы равны 60° Т.к. AD - биссектриса, то угол DAC=углу BAD = 30° Равносторонний треугольник является также равнобедренным. В равнобедренном треугольнике биссектриса является также медианой и высотой. AD - высота расстояние от D до AC обозначим K. Расстояние от точки до прямой является перпендикуляром. Значит угол AKD = 90° В треугольнике AKD угол K=90° угол A=30° угол В=90-30=60° (сумма острых углов прямоугольного треугольника равна 90°) DK=6 см (по условию) Катет лежащий напротив угла 30° (A) равен половине гипотенузы DK равно половине AD AD = 2 · DK = 2 · 6=12 см
проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
Т.к. AD - биссектриса, то угол DAC=углу BAD = 30°
Равносторонний треугольник является также равнобедренным.
В равнобедренном треугольнике биссектриса является также медианой и высотой.
AD - высота
расстояние от D до AC обозначим K.
Расстояние от точки до прямой является перпендикуляром. Значит угол AKD = 90°
В треугольнике AKD
угол K=90°
угол A=30°
угол В=90-30=60° (сумма острых углов прямоугольного треугольника равна 90°)
DK=6 см (по условию)
Катет лежащий напротив угла 30° (A) равен половине гипотенузы
DK равно половине AD
AD = 2 · DK = 2 · 6=12 см
проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
далее все очевидно
d*cos(60) = a/2; sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (sбок*cos( это 64/3. а вся площадь поверхности будет 64.