Сторона АС равна 140-34-50=56дм. Найдем площадь треугольника АВС по Герону: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны треугольника. В нашем случае S=√(70*36*20*14)=√(14*100*36*14)=840дм². С другой стороны, Sabc=(1/2)*BD*AC, отсюда BD=2S/АС или BD=2*840/56=30дм. ответ: BD=30дм.
Вариант решения по Пифагору: АС=140-84=56дм. По Пифагору: Из треугольника АВD: BD²=34²-x². Из треугольника ВDC: BD²=50²-(56-x)². 34²-x²=50²-(56-x)². Отсюда 112х=1156-2500+3136. х=16. По Пифагору из треугольника АВD: BD=√(34²-16²)=30. ответ: BD=30дм.
Проведем КМ||ВС. КМ=ВС=АД КМ делит параллелограмм пополам. Проведем АМ||КС. КСМА - параллелограмм ( по равенству противоположных и параллельных сторон).
АМ=КС. Но КС=КD следовательно, АМ=КD.
В параллелограмме КАDМ диагонали равны. Равенство диагоналей - признак прямоугольника.
Т.к. КМ разделила параллелограмм пополам, то углы КАD и МDА - прямые, следовательно, и углы КВС и ВСМ - прямые.⇒
АВСD- прямоугольник.
Найдем площадь треугольника АВС по Герону:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны треугольника.
В нашем случае S=√(70*36*20*14)=√(14*100*36*14)=840дм².
С другой стороны, Sabc=(1/2)*BD*AC, отсюда
BD=2S/АС или BD=2*840/56=30дм.
ответ: BD=30дм.
Вариант решения по Пифагору:
АС=140-84=56дм.
По Пифагору:
Из треугольника АВD: BD²=34²-x².
Из треугольника ВDC: BD²=50²-(56-x)².
34²-x²=50²-(56-x)². Отсюда 112х=1156-2500+3136.
х=16.
По Пифагору из треугольника АВD: BD=√(34²-16²)=30.
ответ: BD=30дм.