Коэффициент подобия треугольников СОР и С₁ О₁ Р₁ равен 2. Найти площадь треугольника С₁ О₁ Р₁ , если СО=10 см, ОС=8 см, а угол между этими сторонами равен 60°
Теорема: Отрезки касательных к окружности, проведенные из одной точки, равны:
1) BM = BF MD = DL
FA = KA EK = LE
2) Pcde = CD + DE + CE =
= CD + (DL + LE) + CE = (CD + MD) + (EK +CE) = CM + CK =
= (BC - BM) + (AC - AK)
Т.к. ΔАВС - равнобедренный, то
ВС = АС = (Pabc - AB)/2 = (20 - 6)/2 = 7(cм)
Pcde = ВС + АС - ВМ - АК = 2 * 7 - ВМ - АК = 14 - ВМ - АК
3) Центр вписанной окружности лежит на биссектрисе. Но в равнобедренном треугольнике высота, а так же медиана и биссектриса, проведенные к основанию совпадают, следовательно, СF - медиана и делит АВ пополам:
ВF = FA = 6 / 2 = 3 (см)
4) Т.к. отрезки касательных к окружности, проведенные из одной точки, равны, то
№1 по теореме ФалесаМN/МP = MK/ME12/8=MK/6MK= 9 МP/МN =PE/NK8/12=PE/NK = 2 : 3 №2Треугольник АВС подобен треугольнику MNK по второму признаку подобности (по двум пропорцианильным сторонам и равному углу между ними)AB/MN = BC/NK=12/6=18/9=2 - коэф.подобности,Значит AB/MN= AC/MK , MK= 12 x 7/6=14В подобных треугольниках соответствующие углы равны.угол С =60, угол А =50№3треугольник АОС подобен треугольнику ОДВ по первому признаку подобности (по двум равным углам)Периметры подобных треугольников относятся как соответствующие стороны -Периметр АОС : периметру ВОД = АО : ОВ=2 :3,Периметрр АОС = периметр ВОД х 2 /3= 21 х 2/3=14
8см
Объяснение:
Теорема: Отрезки касательных к окружности, проведенные из одной точки, равны:
1) BM = BF MD = DL
FA = KA EK = LE
2) Pcde = CD + DE + CE =
= CD + (DL + LE) + CE = (CD + MD) + (EK +CE) = CM + CK =
= (BC - BM) + (AC - AK)
Т.к. ΔАВС - равнобедренный, то
ВС = АС = (Pabc - AB)/2 = (20 - 6)/2 = 7(cм)
Pcde = ВС + АС - ВМ - АК = 2 * 7 - ВМ - АК = 14 - ВМ - АК
3) Центр вписанной окружности лежит на биссектрисе. Но в равнобедренном треугольнике высота, а так же медиана и биссектриса, проведенные к основанию совпадают, следовательно, СF - медиана и делит АВ пополам:
ВF = FA = 6 / 2 = 3 (см)
4) Т.к. отрезки касательных к окружности, проведенные из одной точки, равны, то
BF = BM = 3(см)
FA = AK = 3(см)
Pcde = 14- ВМ - АК = 14 -2*3 = 8(см)