Когда мы хотим сообщить, что что-то где-то есть, находится, то используем there is (если существительное в ед.ч) или thеrе аrе (если существительное во мн.ч) behind opposite next to in front of 1. There is a garden in front of the house. 2. 3. 5. 6. 8. 9.
Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: с прямым углом , EF — биссектриса , , FG — искомый отрезок. ========== Решение: Докажем, что . 1) Так как — биссектриса, то (биссектриса делит на два равные угла). 2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ). 3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
Отсюда:
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей. Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)). Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда:
ответ: 13. ========= ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.
Из прямоугольного треугольника ABD AD^2=AB^2+BD^2=9+16=25 AD=5 Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12 AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1 Пусть BE высота в треугольнике ABD Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах. Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE Чтобы найти высоту BE выразим площадь треугольника ABD двумя площадь ABD = AB*BD/2 = AD*BE/2, отсюда BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна 2*площадь основания+площадь боковой поверхности площадь боковой поверхности = периметр основания умножить на высоту периметр основания = AB+BC+CD+AD=3+5+3+5=16 тогда площадь боковой поверхности 16*2,4=38,4 площадь полной поверхности 2*12+38,4=24+38,4=62,4
==========
Решение:
Докажем, что .
1) Так как — биссектриса, то (биссектриса делит на два равные угла).
2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ).
3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
Отсюда:
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей.
Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)).
Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда:
ответ: 13.
=========
ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4