Кокружностям с центрами о и о(1) и радиусами r и r(1) проводится общая внутренняя касательная. найдите длину этой касательной если: о о(1) = 25 см, r = 8 см, r(1) = 7 см. решить ясно с хорошим решением. завтра кр, надо понять как это
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
Объяснение:
у=4х-7
Точка А имеет координаты (8,2;25,8), где абсцисса х=8,2.
ордината у=25,8.
Подставим значение х и у в график, и проверим уравнивается правая и левая часть.
25,8=4*8,2-7
25,8=32,8-7
25,8=25,8
Точка А(8,2;25,8) принадлежит графику у=4х-7
2)
т.В(-71;-290)
х=-71
у=-290
у=4х-7, подставляем значение х и у.
-290=4(-71)-7
-290=-284-7
-290≠291
Правая и левая часть не уравнялись, значит т.В(-71;-290) не принадлежит этому графику.
3) т.С(35;-133)
х=35
у=-133
у=4х-7, подставляем значение х и у.
-133=4*35-7
-133=140-7
-133≠133
т.С не принадлежит графику у=4х-7.
4) т.D(-46;-191)
x=-46
у=-191
у=4х-7
-191=4(-46)-7
-191=-184-7
-191=-191
т.D(-46;-191) принадлежит этому графику.
Бог в
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам