1) допустим известен катет а. Т.к. треугольник прямоугольный и равнобедренный, то оба катета равны по а. Значит
S = (ab)\2 = а²/2
в - гипотенуза, тогда по теореме Пифагора имеем в = √(а² + а²) = √2а²
=а√2
высота в равнобедренном треугольнике является медианой и делит гипотенузу пополам. Катет, высота и половина гипотенузы образуют прямоугольный равнобедренный треугольник, значит
h = а√2/2
2) допустим известна гипотенуза в.
тогда найдем катет: а² + а² = в², 2а² = в², а = √(в²/2) = в/√2 = в√2/2
высота : h = в/2
S = (ab)\2 = (в√2/2)²/2 = в²/4
3) допустим известна высота h
высота в равнобедренном треугольнике является медианой и делит гипотенузу пополам. Катет, высота и половина гипотенузы образуют прямоугольный равнобедренный треугольник, значит в/2 = h , тогда
в = 2h
найдем катет: а² + а² = h ², (из треугольника, см. предыдущее пояснение) , 2а² = h ², а = h√2/2
S = (ab)\2 = (h√2/2)²/2 = h/4
4) допустим известна площадь S
найдем катет: а²/2 = S, а² = 2S, а = √(2S)
т.к. треугольник прямоугольный, то (√2S²) + (√2S)² = в², в² = 4S, в = 2√S
Объяснение:
1
a)М-середина
х=(5-3)/2=1 y=(-2+4)/2=1 z=(1+7)/2=4
M(1;1;4)
b)5=(x-3)/2⇒x-3=10⇒x=13
-2=(y+4)/2⇒y+4=-4⇒y=-8
1=(z+7)/2⇒z+7=2⇒z=-5
C(13;-8;-5)
2
a+b={1;-4;1}
|a+b|=√1+16+1=√18=3√2
|a|+|b|=√4+36+9+√1+4+4=√49+√9=7+3=10
3
AB=√(1-2)²+(-5-1)²+(0+8)²=√1+36+64=√101
BC=√(8-1)²+(1+5)²+(-4-0)²=√49+36+16=√101
AC=√(8-2)²+(1-1)²+(-4+8)²=√36+0+16=√52=2√13
AB=BC- треугольник равнобедренный
Средняя линия равна 1/2АС=1/2*2√13=√13
Пусть N(x;y;z)- произвольная точка плоскости.
Тогда векторы NM и n - ортогональны.
Условием ортогональности является равенство нулю их скалярного произведения.
Находим координаты векторов.
NM (2-x;3-y;5-z)
n(4;3;2)
Находим их скалярное произведение - это сумма произведений одноименных координат
4(2-х)+3(3-у)+2(5-z)
и приравниваем к нулю
4(2-х)+3(3-у)+2(5-z) =0
или
8-4х+9-3у+10-2z=0
4x+3y+2z-27=0
ответ. 4х+3у+2z-27=0
Подробнее - на -
Объяснение:
1) допустим известен катет а. Т.к. треугольник прямоугольный и равнобедренный, то оба катета равны по а. Значит
S = (ab)\2 = а²/2
в - гипотенуза, тогда по теореме Пифагора имеем в = √(а² + а²) = √2а²
=а√2
высота в равнобедренном треугольнике является медианой и делит гипотенузу пополам. Катет, высота и половина гипотенузы образуют прямоугольный равнобедренный треугольник, значит
h = а√2/2
2) допустим известна гипотенуза в.
тогда найдем катет: а² + а² = в², 2а² = в², а = √(в²/2) = в/√2 = в√2/2
высота : h = в/2
S = (ab)\2 = (в√2/2)²/2 = в²/4
3) допустим известна высота h
высота в равнобедренном треугольнике является медианой и делит гипотенузу пополам. Катет, высота и половина гипотенузы образуют прямоугольный равнобедренный треугольник, значит в/2 = h , тогда
в = 2h
найдем катет: а² + а² = h ², (из треугольника, см. предыдущее пояснение) , 2а² = h ², а = h√2/2
S = (ab)\2 = (h√2/2)²/2 = h/4
4) допустим известна площадь S
найдем катет: а²/2 = S, а² = 2S, а = √(2S)
т.к. треугольник прямоугольный, то (√2S²) + (√2S)² = в², в² = 4S, в = 2√S
h это пологина гипотенузы, значит h =(2√S)/2 = √S