Известно, что в треугольнике ABC сторона AB=7, AC=4. Найдите отношение, в котором биссектриса угла A (AD) делит медиану, проведённую из вершины B (BM). В ответе укажите отношение большего отрезка к меньшему (BK / KM ).
Дано: AB =7 ; AC =4 ; ∠CAD = ∠BAD (D ∈ [CB ] ) AM= AC ;
( BK / KM ) - ?
K = [ AD ] ∩ [ BM ] * * * K точка пересечения биссектрисы AD и медианы BM . * * * Из ∆ ABM : BK / KM = AB / AM (свойство биссектрисы внутреннего угла ∆ ) ⇔ BK / KM = AB / (AC/2 ) ⇔ BK / KM = 2AB / AC ⇔ BK / KM = =2*7/4 =3,5 .
Дано:
AB =7 ;
AC =4 ;
∠CAD = ∠BAD (D ∈ [CB ] )
AM= AC ;
( BK / KM ) - ?
K = [ AD ] ∩ [ BM ]
* * * K точка пересечения биссектрисы AD и медианы BM . * * *
Из ∆ ABM :
BK / KM = AB / AM (свойство биссектрисы внутреннего угла ∆ ) ⇔
BK / KM = AB / (AC/2 ) ⇔ BK / KM = 2AB / AC ⇔ BK / KM = =2*7/4 =3,5 .
ответ : 3,5 .
Пусть данная пирамида МАВС, МО - высота, точка О - центр треугольника; угол ОМА=45°
МО⊥плоскости основания, ∆ МОА - прямоугольный.
Сумма острых углов прямоугольного треугольника 90°, ⇒∠МАО=45°,
∆ АОМ - равнобедренный. АО=МО=12 см.
О - точка пересечения медиан ∆ АВС, и по свойству медианы АО:НО=2:1. Тогда высота основания АН=12:2•3=18 см
АС=АН:sin 60°=18:√3/2=36:√3•2=12√3
V=S•h:3
Формула площади правильного треугольника
36•3•√3 см²
V=36•3•√3•12:3=432√3 см³
* * *
Объём цилиндра равен произведению площади основания на высоту. Пусть основание вписанной призмы – ∆ АВС, АВ - гипотенуза, АС =m, угол АВС=f.
.Центр окружности, описанной вокруг прямоугольного треугольника, лежит в середине гипотенузы, а радиус равен её половине.
⇒ радиус основания цилиндра равен половине АВ.
АВ=m:sin f
R=0,5m:sin f
V=πr²•h