Даны уравнения двух сторон треугольника. Пусть это будут:
АВ: 2x-y = 0, АС: x + y + 3 = 0.
Запишем их в виде уравнений с угловым коэффициентом.
АВ: у = 2x, АС: у = -x - 3 = 0.
Одну вершину треугольника находим как точку пересечения прямых, содержащих 2 стороны треугольника.
Точка А. 2x - y = 0
x + y + 3 = 0 сложение
3х + 3 = 0 х = -3/3 = -1, у = 2х = 2*(-1) = -2.
Далее находим уравнения высот, проходящих через точку Н (-3; 2) с учётом, что их угловой коэффициент обратен угловому коэффициенту стороны, к которой они проведены.
1). 1-0,5+2*0,5=1,5
2). sin2a-cos2a+1=sin2a+(1-cos2a)=2sin2a
3). ctg2B*sin2B-1=(cos2B/sin2B)*sin2B-1=cos2B-1=-sin2B
4).a больше 0, но меньше 90 градусов, следовательно число расположено в 1 четверти, следовательно синус больше нуля, тангенс больше нуля
соs а=3/5
cos2a+sin2a=1 (основное тригонометрическое тождество)
sin2a=1-9/25
sin2a=6/25
sina=(корень из 6)/5, так как синус больше нуля
tga=sina/cosa=(корень из 6)/5:3/5=(корень из 6)/3, так как тангенс больше нуля
Объяснение:
Извини, если немного непонятно. Мне, просто, было лень писать от руки
Даны уравнения двух сторон треугольника. Пусть это будут:
АВ: 2x-y = 0, АС: x + y + 3 = 0.
Запишем их в виде уравнений с угловым коэффициентом.
АВ: у = 2x, АС: у = -x - 3 = 0.
Одну вершину треугольника находим как точку пересечения прямых, содержащих 2 стороны треугольника.
Точка А. 2x - y = 0
x + y + 3 = 0 сложение
3х + 3 = 0 х = -3/3 = -1, у = 2х = 2*(-1) = -2.
Далее находим уравнения высот, проходящих через точку Н (-3; 2) с учётом, что их угловой коэффициент обратен угловому коэффициенту стороны, к которой они проведены.
к(ВН) = -1/к(АС), ВН: 2 = 1*(-3) + в, отсюда в = 2 + 3 = 5.
Уравнение высоты ВН: у = х + 5.
Аналогично определяем СН: 2 = (-1/2)*(-3) + в, в = 2 - 3/2 = 1/2.
Уравнение высоты СН: у = (-1/2)х + (1/2).
Далее определяем координаты вершин В и С как точек пересечения соответственно прямой АВ и высоты ВН, прямой АС и высоты СН.
Точка В: (5; 10), точка С: (-7; 4).
Теперь можно получить ответ.
Уравнение стороны ВС определяем как прямую , проходящую через 2 точки.
ВС: (х - 5)/(-7 - 5) = (у - 10)/(4 - 10),
(х - 5)/(-12) = (у - 10)/(-6) это каноническое уравнение прямой ВС.
Сократив знаменатели на -6, получаем х - 5 = 2у - 20.
Уравнение ВС в общем виде х - 2у + 15 = 0.
Оно же в виде уравнения с угловым коэффициентом:
ВС: у = (1/2)х + (15/2).