Коло радіусом 5см описане навколо трикутника. Чому дорівнює відстань від центра кола до кожної з вершин трикутника? а)10см б)5см в)2,5см г)визначити не можливо
Ромб АВСД, уголВ=уголД, уголА=уголС, уголС=1/2уголД, уголД=2*уголС, уголС+уголД=180, 3*уголС=180, уголС=уголА=180/3=60, уголД=уголВ=2*60=120, АМ=МД=х, АД=2*АМ=2х=ВС=АВ=СД, СО=ОД=х, площадь треугольника ВСО=1/2*ВС*СО*sinС=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадьтреугольника ОДМ=1/2*ОД*МД*sinД=1/2*х*х*корень3/2=х в квадрате/4, площадь треугольника АВМ=1/2*АВ*АМ*sinА=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадь АВСД=АВ в квадрате*sinА=2х*2х*корень3/2=2*х в квадрате*корень3, площадь треугольника ВМО=площадьАВСД-площадь АВМ-площадь-ВСО-площадь ОДМ=2*х в квадрате-(х в квадрате*корень3/2) -(х в квадрате*корень3/2)-(х в квадрате*корень3/4)=3*х в квадрате*корень3/4, 3√з = 3*х в квадрате*корень3/4, х в квадрате=4, х=2, АВ=АД=СД=ВС=2*2=4, площадь АВСД=4*4*корень3/2=8*корень3
D = 10^2 - 4*1*(-9000) = 100 + 36000 = 36100 . Корень квадратный из дискриминанта равен 190 . Найдем корени квадратного уравнения : 1-ый = (- 10 + 190)/2*1 =180/2 = 90 ; 2-ой = (-10 - 190)/2*1 = -200/2 = - 100 . Второй корень не подходит так как х - это ширина площадки , а она не может быть меньше 0 . Значит ширина площадки равна 90 м. Отсюда длина площадки равна : х + 10 = 90 + 10 = 100 м
х - ширина площадки
(х + 10) - длина площадки , по условию задачи имеем : х *(х +10) = 9000
x^2 + 10x = 9000
x^2 + 10x - 9000 =0 . Найдем дискриминант квадратного уравнения - D
D = 10^2 - 4*1*(-9000) = 100 + 36000 = 36100 . Корень квадратный из дискриминанта равен 190 . Найдем корени квадратного уравнения : 1-ый = (- 10 + 190)/2*1 =180/2 = 90 ; 2-ой = (-10 - 190)/2*1 = -200/2 = - 100 . Второй корень не подходит так как х - это ширина площадки , а она не может быть меньше 0 . Значит ширина площадки равна 90 м. Отсюда длина площадки равна : х + 10 = 90 + 10 = 100 м
Объяснение: