Проведем радиусы ОА, ОВ, ОС. По условию, угол АСВ = 120 1) Треугольники АОС и ВОС равны по третьему признаку: у них ОС - общая сторона, ОА = ОВ как радиусы одной окружности, АС = ВС по условию. Кроме того, эти треугольники еще и равнобедренные
2) Т.к. треугольники АОС и ВОС равны, то углы АСО и ВСО равны. АСО = ВСО = АСВ : 2 = 120 : 2 = 60
3) Т.к. в равнобедренном треугольнике углы при основании равны, то ОАС = ОСА = 60 в треугольнике АСО и (аналогично) ОВС = ОСВ = 60 в треугольнике ВСО. Поскольку сумма углов ОАС + АСО + АОС треугольника АСО равна 180, то угол АОС тоже равен 60 и треугольник АСО равносторонний, а значит, АО = АС = 4, т.е. радиус окружности равен 4. Но т.к. диаметр равен двум радиусам, то диаметр будет 2 · 4 = 8
Проведем в треугольнике ABC высоту BH (она является еще и медианой, биссектрисой, т.к. треугольник равнобедренный).
Углы треугольника при основании (180/120)/2=30 гр.
Рассмотрим прямоугольный треугольник ABH. Катет BH лежит против угла в 30 гр. значит он равен 1/2*5=2,5. По теореме Пифагора найдем второй катет AH=√5^2-2,5^2=√25-6,25=√18,75=(5√3)/2
Диаметр описанной окружности равен 2S/p, где S-площадь, а p-полупериметр.
1) Треугольники АОС и ВОС равны по третьему признаку: у них ОС - общая сторона, ОА = ОВ как радиусы одной окружности, АС = ВС по условию. Кроме того, эти треугольники еще и равнобедренные
2) Т.к. треугольники АОС и ВОС равны, то углы АСО и ВСО равны. АСО = ВСО = АСВ : 2 = 120 : 2 = 60
3) Т.к. в равнобедренном треугольнике углы при основании равны, то ОАС = ОСА = 60 в треугольнике АСО и (аналогично) ОВС = ОСВ = 60 в треугольнике ВСО. Поскольку сумма углов ОАС + АСО + АОС треугольника АСО равна 180, то угол АОС тоже равен 60 и треугольник АСО равносторонний, а значит, АО = АС = 4, т.е. радиус окружности равен 4. Но т.к. диаметр равен двум радиусам, то диаметр будет 2 · 4 = 8
ответ: 8
Проведем в треугольнике ABC высоту BH (она является еще и медианой, биссектрисой, т.к. треугольник равнобедренный).
Углы треугольника при основании (180/120)/2=30 гр.
Рассмотрим прямоугольный треугольник ABH. Катет BH лежит против угла в 30 гр. значит он равен 1/2*5=2,5. По теореме Пифагора найдем второй катет AH=√5^2-2,5^2=√25-6,25=√18,75=(5√3)/2
Диаметр описанной окружности равен 2S/p, где S-площадь, а p-полупериметр.
Площадь треугольника равна 2,5*2*(5√3)/2/2=6,25√3
Полупериметр равен (5+5+5√3)/2=10+5√3/2
d=2*6,25√3/10+5√3/2=10√3-15