Коло радiуса 6 см вписано в ромб.Знайти бiльшу дiагональ ромба i його кути, якщо бiльша дiагональ удвiчi бiльша за висоту ромба. (Коло радиуса 6 см вписано в ромб.Найти большую диагональ ромба и его углы, если большая диагональ вдвое больше за высоту ромба .
Это следует из соотношения квадратов его сторон по Пифагору:
6² + 8² = 36 + 64 = 100,
10² = 100.
Если все боковые рёбра равны, то ось пирамиды вертикальна и проходит через середину гипотенузы основания пирамиды.
Это вытекает из равенства проекций боковых рёбер пирамиды на её основание. Точка в прямоугольном треугольнике, равноудалённая от его вершин, находится в середине гипотенузы.
Отсюда находим высоту пирамиды:
Н = √(13² - (10/2)²) = √(169 - 25) = √144 = 12.
Обозначим трапецию АВСD.
Точки Н и Т делят сторону СD на отрезки
СН=НТ=ТD.
Теорема Фалеса. Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. ⇒
ВК=КР=РА.
Средняя линия трапеции АВСD - отрезок МN=(ВС+AD):2=(2+5):2=3,5 (м)
СH=HT=TD ⇒
HN=NT, поэтому
MN- средняя линия трапеции РКНТ.
Примем КН=х, РТ=у
Тогда х+у=2•3,5=7, откуда
у=7-х.
КН- средняя линия трапеции РВСТ
КН=(2+(7-х)):2=х
9-х=2х ⇒
х=3 (м) - длина отрезка КН
у=7-3=4 (м) - длина отрезка РТ