Коло, вписане у рівнобедрений трикутник, ділить його бічну сторону на відрізки 2 см і 3 см, починаючи від вершини, протилежної основі. Знайдіть периметр трикутника
Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.
Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.
Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).
Замечание. На основе теоремы 2 устанавливается теорема 3.
Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.
Из последней теоремы вытекает теорема 4.
Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.
Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны
1.угол В=х,тогда угол А=х+85,а угол С=х-25. Зная что сумма уголов треугольника равна 180 градусов составим уравнение x+x+85+x-25=180 3x=180-60 x=120/3=40 уголВ=40 уголА=40+85=125 уголС=40-25=15 2.угол С и угол ВСД смежные их сумма равна 180 угол С=180-127=53 уголС=углуА=53 углы при основании угол В= 180-(53+53)=180-106=74 3.рассмотрим треугольник РОК уголКРО=25 градусов,т.к. РО-биссектриса уголРОК=60 по увовию уголК=180-(25+60)=180-85=95 по сумме уголов треугольник так же найдем угол М угол М =180-(50+95)=180-145=35
Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.
Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.
Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).
Замечание. На основе теоремы 2 устанавливается теорема 3.
Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.
Из последней теоремы вытекает теорема 4.
Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.
Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны
Объяснение:
x+x+85+x-25=180
3x=180-60
x=120/3=40
уголВ=40
уголА=40+85=125
уголС=40-25=15
2.угол С и угол ВСД смежные их сумма равна 180
угол С=180-127=53
уголС=углуА=53 углы при основании
угол В= 180-(53+53)=180-106=74
3.рассмотрим треугольник РОК
уголКРО=25 градусов,т.к. РО-биссектриса
уголРОК=60 по увовию
уголК=180-(25+60)=180-85=95 по сумме уголов треугольник
так же найдем угол М
угол М =180-(50+95)=180-145=35