Коло, вписане у рівнобедрений трикутник, ділить його бічну сторону у відношенні 1 : 3, починаючи від основи. Знайдіть сторони трикутника, якщо його периметр дорівнює 70 см.
В абсолютно любой трапеции (не важно, чему равны ее стороны))) треугольники, получившиеся после пересечения диагоналей трапеции, обладают следующими свойствами: треугольники, опирающиеся на боковые стороны трапеции (выделены желтым цветом на рис.)), имеют равные площади... это равновеликие треугольники... это легко доказывается... треугольники, опирающиеся на основания трапеции, всегда подобны, т.к. они содержат вертикальные (равные) углы и накрест лежащие (тоже равные) углы (при параллельных основаниях трапеции) треугольники AOD и DOC в принципе могут быть подобны, если у них есть два равных угла... равные углы будут лежать против соответственных сторон, например, против самых маленьких сторон треугольников ---самые маленькие углы))) найдем их косинусы по т.косинусов cos(BDC) = (12² + 10² - 2.5²) / 240 = 23775/24000 = 317/320 = 0.990625 cos(BDA) = (12² + 7.5² - 5²) / 180 = 17525/18000 = 701/720 = 0.9736(1) косинусы не равны ---> углы не равны ---> треугольники НЕ подобны)))
Призма правильная ---> прямая, С1С _|_ (АВС) ---> C1C _|_ CO C1O наклонена к плоскости (АВС) под углом С1ОС, т.к. СО --проекция С1О на (АВС) С1С = АВ = АС = ВС по условию треугольник С1СО --прямоугольный, но НЕ равнобедренный, т.к. высота СО равностороннего треугольника АВС не может быть равна стороне этого треугольника (гипотенуза всегда бО'льшая сторона прямоугольного треугольника))) --->СО≠С1С следовательно, угол С1ОС не может быть равен 45° ответ: не верно. высота (h) равностороннего треугольника меньше его стороны (а): h = a*sin60° = a√3 / 2
треугольники, получившиеся после пересечения диагоналей трапеции, обладают следующими свойствами:
треугольники, опирающиеся на боковые стороны трапеции
(выделены желтым цветом на рис.)), имеют равные площади...
это равновеликие треугольники... это легко доказывается...
треугольники, опирающиеся на основания трапеции, всегда подобны,
т.к. они содержат вертикальные (равные) углы и
накрест лежащие (тоже равные) углы
(при параллельных основаниях трапеции)
треугольники AOD и DOC в принципе могут быть подобны,
если у них есть два равных угла...
равные углы будут лежать против соответственных сторон,
например, против самых маленьких сторон треугольников
---самые маленькие углы))) найдем их косинусы по т.косинусов
cos(BDC) = (12² + 10² - 2.5²) / 240 = 23775/24000 = 317/320 = 0.990625
cos(BDA) = (12² + 7.5² - 5²) / 180 = 17525/18000 = 701/720 = 0.9736(1)
косинусы не равны ---> углы не равны ---> треугольники НЕ подобны)))
С1С _|_ (АВС) ---> C1C _|_ CO
C1O наклонена к плоскости (АВС) под углом С1ОС,
т.к. СО --проекция С1О на (АВС)
С1С = АВ = АС = ВС по условию
треугольник С1СО --прямоугольный, но НЕ равнобедренный, т.к.
высота СО равностороннего треугольника АВС
не может быть равна стороне этого треугольника (гипотенуза всегда бО'льшая сторона прямоугольного треугольника))) --->СО≠С1С
следовательно, угол С1ОС не может быть равен 45°
ответ: не верно.
высота (h) равностороннего треугольника меньше его стороны (а):
h = a*sin60° = a√3 / 2