Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
ерез три точки, не лежащие на одной прямой, можно провести плосксть, притом только одну. Отсюда следует, что, так как вершина В треугольника не лежит в плоскости α, то плоскость треугольника не лежит в плоскости α, и его средняяо линия не лежит в той плоскости.
Пусть М делит пополам сторону АВ, а N- делит пополам сторону ВС
Отрезок MN-, соединяющий середины сторон треугольника, является его средней линией.
Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине. (свойство средней линии)
По теореме о параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
MN не лежит в плоскости α и параллельна АС, лежащей в плоскости α. Значит, MN || α, что и требовалось доказать.
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.
ерез три точки, не лежащие на одной прямой, можно провести плосксть, притом только одну. Отсюда следует, что, так как вершина В треугольника не лежит в плоскости α, то плоскость треугольника не лежит в плоскости α, и его средняяо линия не лежит в той плоскости.
Пусть М делит пополам сторону АВ, а N- делит пополам сторону ВС
Отрезок MN-, соединяющий середины сторон треугольника, является его средней линией.
Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине. (свойство средней линии)
По теореме о параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
MN не лежит в плоскости α и параллельна АС, лежащей в плоскости α. Значит, MN || α, что и требовалось доказать.
Объяснение: