Из определения вписанной окр-ти т.О и есть центр вписанной окружности. Рассмотрим треугольник ВОД. Угол ОВД = АВС/2 = 120/2 = 60. Угол ВДО = 90 (т.к. ВС касательная). Тогда угол ВОД = 180-60-90=30. Примем ВД за х. Тогда ВО = 2х (как катет лежащий против угла в 30 градусов). По теореме Пифагора: ВО^2-ВД^2=ОД^2. 4х^2-х^2=(2корень из 3)^2. Отсюда х=2, ВО=2*2=4.
Угол ДОЕ=180-ВОД=180-30=150. Рассмотрим треугольник ДОЕ: ДО=ОЕ (как радиусы), т.е. это равнобедренный треугольник. тогда угол ВЕД=ОДЕ=(180-ДОЕ)/2=30/2=15.
В равнобедренном тр-ке боковые стороны равны. Биссектриса в равнобедренном тр-ке является его высотой и медианой. Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка.. Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х) Х^2 = 17^2 - 15^2 X^2 = 289 - 225 = 64 X = 8 Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2) Искомый периметр тр-ка = 17 +17+ 16= 50 (см)
Из определения вписанной окр-ти т.О и есть центр вписанной окружности. Рассмотрим треугольник ВОД. Угол ОВД = АВС/2 = 120/2 = 60. Угол ВДО = 90 (т.к. ВС касательная). Тогда угол ВОД = 180-60-90=30. Примем ВД за х. Тогда ВО = 2х (как катет лежащий против угла в 30 градусов). По теореме Пифагора: ВО^2-ВД^2=ОД^2. 4х^2-х^2=(2корень из 3)^2. Отсюда х=2, ВО=2*2=4.
Угол ДОЕ=180-ВОД=180-30=150. Рассмотрим треугольник ДОЕ: ДО=ОЕ (как радиусы), т.е. это равнобедренный треугольник. тогда угол ВЕД=ОДЕ=(180-ДОЕ)/2=30/2=15.
Биссектриса в равнобедренном тр-ке является его высотой и медианой.
Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка..
Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х)
Х^2 = 17^2 - 15^2
X^2 = 289 - 225 = 64
X = 8
Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2)
Искомый периметр тр-ка = 17 +17+ 16= 50 (см)