рассматриваем в плоскости- около треугольника АВС описана окружность с центом О1, О-центр шара, ОО1 перпендикулярна плоскости АВС=4, треугольник АВС прямоугольный, АС=2, ВС=4*корень2, АВ=6, если сумма квадратов двух сторон=квадрату большей стороны треугольник прямоугольный, АС в квадрате+ВС в квадрате=4+32=36, АВ в квадрате=6*6=36, центр описанной окружности середина гипотенузы АВ, АО1=ВО1=6/2=радиус окружности, треугольник АОО1 прямоугольный, АО (радиус сферы)=(АО1 в квадрате+ОО1 в квадрате)=корень(9+16)=5
полупериметр треугольника (р)=(3+7+8)/2=9, площадь треугольника=корень(р*(р-сторона1)*(р-сторона2)*(р-сторона3))=корень(9*6*2*1)=корень108=6*корень3, r=площадь/полупериметр=6*корень3/9=2корень3/3, R=(сторона1*сторона2*сторона3)/(4*площадь)=(3*7*8)/(4*6*корень3)=168/(24*корень3)=7*корень3/3
количество диагоналей=n*(n-3)/2, 152=n в квадрате-3n, n в квадрате-3n-152=0, n=(3+-корень(9+1216))/2=(3+-35)/2, n1=19, n2=16, проверяем n1, 19*(19-3)/2=152 , проверяем n2, 16*(16-3)/2=104-не подходит, количество сторон=19=количество углов, сумма углов=180*(n-2)=180*(19-2)=3060
полупериметр треугольника (р)=(3+7+8)/2=9, площадь треугольника=корень(р*(р-сторона1)*(р-сторона2)*(р-сторона3))=корень(9*6*2*1)=корень108=6*корень3, r=площадь/полупериметр=6*корень3/9=2корень3/3, R=(сторона1*сторона2*сторона3)/(4*площадь)=(3*7*8)/(4*6*корень3)=168/(24*корень3)=7*корень3/3
количество диагоналей=n*(n-3)/2, 152=n в квадрате-3n, n в квадрате-3n-152=0, n=(3+-корень(9+1216))/2=(3+-35)/2, n1=19, n2=16, проверяем n1, 19*(19-3)/2=152 , проверяем n2, 16*(16-3)/2=104-не подходит, количество сторон=19=количество углов, сумма углов=180*(n-2)=180*(19-2)=3060