Для этого надо найти длины сторон по координатам вершин: A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 = 8.544004. ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6. АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 = 8.544004. Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный. Высота, опущенная на сторону а, равна: ha = 2√(p(p-a)(p-b)(p-c)) / a. a b c p 2p S 8.5440037 6 8.5440037 11.544004 23.08800749 24 ha hb hc 5.61798 8 5.61798
A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 = 8.544004.
ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6.
АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 = 8.544004.
Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный. Высота, опущенная на сторону а, равна:
ha = 2√(p(p-a)(p-b)(p-c)) / a.
a b c p 2p S
8.5440037 6 8.5440037 11.544004 23.08800749 24
ha hb hc
5.61798 8 5.61798
Объяснение:
1)
Если две плоскости имеют хотя
бы одну общую точку, то они пере
секаются и их пересечением явля
ется прямая (не рассматриваем ва
риант совпадения двух плоскостей).
В данной ситуации плоскость сече
ния MKN будет пересекать все че
тыре вертикальные грани парал
лелепипеда.
2)
Если две параллельные плоскости
пересекает третья плоскость, то
прямые пересечения параллель
ны.
3)
В противоположных гранях че
рез данные точки проводим ( сое
диняем точки М и K ) прямую МK
и через точку N параллельно МK
прямую NX. Отрезки МK и NX яв
ляются линиями сечения;
(соединяем точки K и N) прово
дим прямую KN и через точку М
параллельно KN прямую МХ. От
резки KN и МХ являются линия
ми сечения.
4)
Искомое сечение - четырехуголь
ник МКNX, который является пря
моугольником.