Припустимо, що наша трапеція АВСД, в якої паралельні сторони, тобто її основи ВС=4см, АД=25см. Бічні сторони АВ=13 см, СД=20 см. Площа трапеції дорівнює добутку висоти трапеції на половину суми його основ. Тобто для того, щоб знайти площу трапеції нам потрібно знайти розмір її висоти. Для цього з верши В та С опустимо дві висоти на основу АД. У нас вийшло дві висоти ВК та СН, які між собою рівні, оскільки КВСН - це прямокутник, а в прямокутника протилежні сторони рівні. А це означає, що ВС=КН=4 см. Також зазначимо, що АК=АД-КН-ДН=25-4-ДН=21-ДН Розглянемо трикутник АВК, він прямокутний, бо ВК - це висота, а значит в цьому трикутнику ∠К=90°. АВ - гіпотенуза, а ВК та АК - це два катети. По теоремі Піфагора ( квадрат гіпотенузи = сумі квадратів катетів) виходить, що АВ²=ВК²+АК² 13²=ВК²+(21-ДН)² ВК²=13²-(21-ДН)² ВК²=169-(441-42ДН+ДН²) ВК²=169-441+42ДН-ДН². ВК²= -272+42ДН-ДН².
Розглянемо трикутник ДСН, він прямокутний, бо СН - це висота, а значит в цьому трикутнику ∠Н=90°. СД - гіпотенуза, а СН та ДН - це два катети. По теоремі Піфагора ( квадрат гіпотенузи = сумі квадратів катетів) виходить, що СД²=СН²+ДН² 20²=СН²+ДН² СН²=20²-ДН² СН²=400-ДН²
А оскільки ВК=СН, значить -272+42ДН-ДН²=400-ДН² 42ДН-ДН²+ДН²=400+272 42ДН=672 ДН=672/42 ДН=16 см.
СН²=400-ДН² СН²=400-16² СН=√144 СН=12 см - висота трапеції. Тепер значення висоти трапеції підставляємо у формулу площі трапеції: Р трапеції=СН*(ВС+АД)/2 = 12*(4+25)/2=12*29/2=174 см²
ВD - биссектриса и делит угол В на две равные части, поэтому дуги АD и СD, на которые опираются половины вписанного угла В, равны. По условию АD =АС . Треугольник АСD равнобедренный. ∠ АСD=∠ АDС. АС=АD равные хорды и стягивают равные дуги. Значит, дуга АВС=дуге АD. Но ◡АD=◡СD как дуги, на которые опираются равные углы АВD и СВD ⇒ Точки А, С, D делят окружность на три равные дуги с градусной мерой 360º:3=120º Вписанный угол АВС опирается на дугу АDС=120º*2=240º Вписанный угол равен половине дуги, на которую опирается. ⇒ Угол АВС=240º: 2=120º
Площа трапеції дорівнює добутку висоти трапеції на половину суми його основ.
Тобто для того, щоб знайти площу трапеції нам потрібно знайти розмір її висоти.
Для цього з верши В та С опустимо дві висоти на основу АД.
У нас вийшло дві висоти ВК та СН, які між собою рівні, оскільки КВСН - це прямокутник, а в прямокутника протилежні сторони рівні.
А це означає, що ВС=КН=4 см.
Також зазначимо, що АК=АД-КН-ДН=25-4-ДН=21-ДН
Розглянемо трикутник АВК, він прямокутний, бо ВК - це висота, а значит в цьому трикутнику ∠К=90°.
АВ - гіпотенуза, а ВК та АК - це два катети.
По теоремі Піфагора ( квадрат гіпотенузи = сумі квадратів катетів) виходить, що
АВ²=ВК²+АК²
13²=ВК²+(21-ДН)²
ВК²=13²-(21-ДН)²
ВК²=169-(441-42ДН+ДН²)
ВК²=169-441+42ДН-ДН².
ВК²= -272+42ДН-ДН².
Розглянемо трикутник ДСН, він прямокутний, бо СН - це висота, а значит в цьому трикутнику ∠Н=90°.
СД - гіпотенуза, а СН та ДН - це два катети.
По теоремі Піфагора ( квадрат гіпотенузи = сумі квадратів катетів) виходить, що
СД²=СН²+ДН²
20²=СН²+ДН²
СН²=20²-ДН²
СН²=400-ДН²
А оскільки ВК=СН, значить
-272+42ДН-ДН²=400-ДН²
42ДН-ДН²+ДН²=400+272
42ДН=672
ДН=672/42
ДН=16 см.
СН²=400-ДН²
СН²=400-16²
СН=√144
СН=12 см - висота трапеції.
Тепер значення висоти трапеції підставляємо у формулу площі трапеції:
Р трапеції=СН*(ВС+АД)/2 = 12*(4+25)/2=12*29/2=174 см²
Відповідь: площа трапеції дорівнює 174 см²
По условию АD =АС .
Треугольник АСD равнобедренный. ∠ АСD=∠ АDС.
АС=АD равные хорды и стягивают равные дуги.
Значит, дуга АВС=дуге АD.
Но ◡АD=◡СD как дуги, на которые опираются равные углы АВD и СВD ⇒
Точки А, С, D делят окружность на три равные дуги с градусной мерой 360º:3=120º
Вписанный угол АВС опирается на дугу АDС=120º*2=240º Вписанный угол равен половине дуги, на которую опирается. ⇒
Угол АВС=240º: 2=120º