Концы отрезка сд принадлежат двум перпендикулярным плоскостям. расстояния от концов отрезка до линии пересечения плоскостей равны ск=12 см и дм= 4 см. найдите длину отрезка сд, если км=3 см.
Вершина квадрата,лежащая на ребре SC, равно удалена от рёбер SA (также и SB) и ВС, поэтому она лежит на биссектрисе угла CBS. Биссектриса делит противоположную сторону пропорционально прилегающим сторонам. 6 : 12 = 1 :2. Поэтому сторона SC разделится на 3 части: 1 часть ближе к стороне СВ -это (12/3)*1= 4. Это и есть длина стороны квадрата. Теперь переходим к диагонали этого квадрата. Один конец её находится на боковом ребре на расстоянии 1/3 его длины. Значит, и по высоте будет находиться на 1/3 высоты пирамиды. Вершина правильной пирамиды проецируется в точку пересечения медиан треугольника основания - это 2/3 высоты основания, считая от вершины. Высота основания h = 6*cos 30 = 6*(√3/2) = 3√3. 2/3 части её равны 3√3*2 / 3 = 2√3. Отсюда высота пирамиды H = √(12²-(2√3)²) = √(144-12) = √132 = =2√33 = 11,4891. Третья часть составит 2√3 / 3 = 3,82971. Боковая сторона проекции квадрата на основание равна: (2/2) / cos 30 = 1 /(√3/2) = 2 / √3 = 1,1547. Проекция диагонали равна √(4²+ 1.1547²) = √16+ 1,33333) = = √17,3333 = 4,16333. Тангенс угла наклона диагонали квадрата полученного сечения к основанию равен 3,82971 / 4,16333 = 0.91987. Угол равен arc tg 0.91987 = 0.74368 радиан = 42.6099 градуса.
Нужен единичный отрезок. Может быть получен делением отрезка по теореме Фалеса.
1) Гипотенуза треугольника с катетами 1 и 2 равна √5 (по теореме Пифагора)
2) Высота из прямого угла есть среднее пропорциональное проекций катетов на гипотенузу, h=√(AD*DB)
- достраиваем к отрезку AD=5 отрезок DB=1 на одной прямой
- строим окружность на гипотенузе AB
- строим перпендикуляр к AB из точки D
- пересечение перпендикуляра и окружности - C
Вписанный угол ACB - прямой, так как опирается на диаметр. CD - высота из прямого угла.
CD =√(AD*DB) =√(5*1) =√5
Биссектриса делит противоположную сторону пропорционально прилегающим сторонам.
6 : 12 = 1 :2. Поэтому сторона SC разделится на 3 части: 1 часть ближе к стороне СВ -это (12/3)*1= 4.
Это и есть длина стороны квадрата.
Теперь переходим к диагонали этого квадрата.
Один конец её находится на боковом ребре на расстоянии 1/3 его длины. Значит, и по высоте будет находиться на 1/3 высоты пирамиды.
Вершина правильной пирамиды проецируется в точку пересечения медиан треугольника основания - это 2/3 высоты основания, считая от вершины.
Высота основания h = 6*cos 30 = 6*(√3/2) = 3√3.
2/3 части её равны 3√3*2 / 3 = 2√3.
Отсюда высота пирамиды H = √(12²-(2√3)²) = √(144-12) = √132 =
=2√33 = 11,4891.
Третья часть составит 2√3 / 3 = 3,82971.
Боковая сторона проекции квадрата на основание равна:
(2/2) / cos 30 = 1 /(√3/2) = 2 / √3 = 1,1547.
Проекция диагонали равна √(4²+ 1.1547²) = √16+ 1,33333) =
= √17,3333 = 4,16333.
Тангенс угла наклона диагонали квадрата полученного сечения к основанию равен 3,82971 / 4,16333 = 0.91987.
Угол равен arc tg 0.91987 = 0.74368 радиан = 42.6099 градуса.