Сечение FA1C1D- прямоугольник, т.к. грани , содержащие стороны А1F и C1D параллельны между собой и перпендикулярны основанию. Площадь сечения - площадь прямоугольника со сторонами А1F (длина) и DF (ширина) Ширина DF равна удвоенной длине высоты FН равностороннего треугольника в основании призмы со стороной 6. FH=FE*sin (60°) DF=2*FН=2*(6√3):2=6√3 cм А1F=10 ( треугольник АА1Ф - египетский, можно проверить по т. Пифагора) S A1C1DF= 10*6√3=60√3 см² Угол между сечением и плоскостью основания - это угол А1FA на грани А1F1FA Его синус равен A1A:A1F=8:10=0,8, а градусная величина приблизительно 53°
Площадь сечения - площадь прямоугольника со сторонами А1F (длина) и DF (ширина)
Ширина DF равна удвоенной длине высоты FН равностороннего треугольника в основании призмы со стороной 6.
FH=FE*sin (60°)
DF=2*FН=2*(6√3):2=6√3 cм
А1F=10 ( треугольник АА1Ф - египетский, можно проверить по т. Пифагора)
S A1C1DF= 10*6√3=60√3 см²
Угол между сечением и плоскостью основания - это угол А1FA на грани А1F1FA
Его синус равен A1A:A1F=8:10=0,8, а градусная величина
приблизительно 53°
Дано:
тр АВС - р/б (АС - основание)
АМ, СК - медианы
АМ ∩ СК = О
Доказать:
тр АОК = тр СОМ
Доказательство:
1) Т.к тр АВС - р/ б и АМ и СК медианы по условию, то
а) АК=КВ=ВМ=МС
б) уг ВАС = уг ВСА (по св-ву углов при основании р/б тр)
2) тр АКС = тр СМА по двум сторонам и углу между ними, так как в них:
АС - общая сторона
АК = СМ (по п.1а)
уг КАС = уг МСА (по п.1б)
Следовательно, уг АКС = уг СМА и уг АСК = уг САМ
3) уг МАК = уг КСМ, как разность равных углов за минусом равных углов, по аксиоме измерения углов,
а именно уг МАК = уг ВАС - уг САМ и
уг КСМ = уг ВСА - уг АСК
4) Получили:
АК = СМ (из п 1а)
уг МАК = уг КСМ (из п 3)
уг АКС = уг СМА ( из п 2)
следовательно, тр АОК = тр СОМ по стороне и двум прилежащим к ней углам