Контрольна робота Коло і круг Варіант 1. Початковий рівень Завдання 1 – 3 по п'ять варіантів відповідей, з яких тільки одна правильна. Оберіть правильну на вашу думку відповідь 1. За даними ресунка виберіть діаметр кола A д АО CE MO д AD
Пусть биссектриса AE проведена к основанию BC равнобедренного треугольника ABC. Треугольник AEB будет прямоугольным, так как биссектриса AE будет одновременно являться его высотой. Боковая сторона AB будет гипотенузой этого треугольника, а BE и AE - его катетами.
По теореме Пифагора (AB^2) = (BE^2)+(AE^2). Тогда (BE^2) = sqrt((AB^2)-(AE^2)). Так как AE и медиана треугольника ABC, то BE = BC/2. Следовательно, (BE^2) = sqrt((AB^2)-((BC^2)/4)).
Если задан угол при основании ABC, то из прямоугольного треугольника биссектриса AE равна AE = AB/sin(ABC). Угол BAE = BAC/2, так как AE - биссектриса. Отсюда, AE = AB/cos(BAC/2).
2
Пусть теперь проведена высота BK к боковой стороне AC. Эта высота уже не является ни медианой, ни биссектрисой треугольника. Для вычисления ее длины существует формула Стюарта.
Периметр треугольника - это сумма длин всех его сторон P = AB+BC+AC. А его полупериметр равен половине суммы длин всех его сторон: P = (AB+BC+AC)/2 = (a+b+c)/2, где BC = a, AC = b, AB = c.
Формула Стюарта для длины биссектрисы, проведенной к стороне c (то есть, AB), будет иметь вид: l = sqrt(4abp(p-c))/(a+b).
3
Из формулы Стюарта видно, что биссектриса, проведенная к стороне b (AC), будет иметь такую же длину, так как b = c.
Можно обойтись и без рисунка, но для наглядности он дан.
Заметим, что в равнобедренном треугольнике биссектриса и медиана, проведенные к основанию, совпадают.
Поэтому СН и АК - медианы и пересекаются с точке М.
Биссектрисы пересекаются в точке О, и эта точка - центр вписанной окружности. Искомое расстояние - ОМ.
В треугольнике АВС гипотенуза
АВ = СВ:sin(45°)=2
CН -медиана и равна половине гипотенузы по свойству медианы прямоугольного треугольника.
СН=1
Медианы треугольника точкой пересечения делятся в отношении 2:1 считая от вершины.
⇒МН- одна треть медианы СН =1/3
ОМ=ОН-МН.
ОН=r= радиус вписанной в АВС окружности.
r=(a+b-c):2= (2√2-2):2=√2-1
ОМ=√2-1-1/3= √2-1¹/₃ = приближенно 0,08088
Пусть биссектриса AE проведена к основанию BC равнобедренного треугольника ABC. Треугольник AEB будет прямоугольным, так как биссектриса AE будет одновременно являться его высотой. Боковая сторона AB будет гипотенузой этого треугольника, а BE и AE - его катетами.
По теореме Пифагора (AB^2) = (BE^2)+(AE^2). Тогда (BE^2) = sqrt((AB^2)-(AE^2)). Так как AE и медиана треугольника ABC, то BE = BC/2. Следовательно, (BE^2) = sqrt((AB^2)-((BC^2)/4)).
Если задан угол при основании ABC, то из прямоугольного треугольника биссектриса AE равна AE = AB/sin(ABC). Угол BAE = BAC/2, так как AE - биссектриса. Отсюда, AE = AB/cos(BAC/2).
2Пусть теперь проведена высота BK к боковой стороне AC. Эта высота уже не является ни медианой, ни биссектрисой треугольника. Для вычисления ее длины существует формула Стюарта.
Периметр треугольника - это сумма длин всех его сторон P = AB+BC+AC. А его полупериметр равен половине суммы длин всех его сторон: P = (AB+BC+AC)/2 = (a+b+c)/2, где BC = a, AC = b, AB = c.
Формула Стюарта для длины биссектрисы, проведенной к стороне c (то есть, AB), будет иметь вид: l = sqrt(4abp(p-c))/(a+b).
3Из формулы Стюарта видно, что биссектриса, проведенная к стороне b (AC), будет иметь такую же длину, так как b = c.