В усеченный конус можно вписать шар тогда и только тогда, когда образующая равна сумме радиусов оснований l=R+r, радиус шара Rш=H/2. Площадь боковой поверхности ус.конуса Sбок=πl(R+r)=πl² 10π=πl² l=√10 - это образующая Площадь полной поверхности ус.конуса Sполн=Sбок+πR²+πr² 18π=10π+π(R²+r²) R²+r²=8 Получается система уравнений: R+r=√10 R²+r²=8 R=√10-r (√10-r)²+r²=8 10-2√10r+r²+r²=8 r²-√10r+1=0 D=10-4=6 r=(√10-√6)/2 R=(√10+√6)/2 Теперь можно найти высоту усеченного конуса Н по т.Пифагора из прямоугольного треугольника, у которого гипотенуза l, 1 катет Н и 2 катет R-r=(√10+√6)/2-(√10-√6)/2=√6. Н²=l²-(R-r)²=√10²-√6²=4 H=2 Площадь поверхности шара Sш=4πRш²=4πН²/4=πН²=4π Разница Sполн-Sш=18π-4π=14π
Площадь боковой поверхности ус.конуса Sбок=πl(R+r)=πl²
10π=πl²
l=√10 - это образующая
Площадь полной поверхности ус.конуса Sполн=Sбок+πR²+πr²
18π=10π+π(R²+r²)
R²+r²=8
Получается система уравнений:
R+r=√10
R²+r²=8
R=√10-r
(√10-r)²+r²=8
10-2√10r+r²+r²=8
r²-√10r+1=0
D=10-4=6
r=(√10-√6)/2
R=(√10+√6)/2
Теперь можно найти высоту усеченного конуса Н по т.Пифагора из прямоугольного треугольника, у которого гипотенуза l, 1 катет Н и 2 катет
R-r=(√10+√6)/2-(√10-√6)/2=√6.
Н²=l²-(R-r)²=√10²-√6²=4
H=2
Площадь поверхности шара Sш=4πRш²=4πН²/4=πН²=4π
Разница Sполн-Sш=18π-4π=14π
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.