утверждение в) верно, но только для прямых, лежащих в одной плоскости.
объяснение:
определение: "две прямые, пересекающиеся под прямым углом, называются перпендикулярными" (для плоскости).
определение: "две прямые называются перпендикулярными, если угол между ними равен 90°". (для пространства). при этом они не имеют общей точки.
утверждение а) не верно, так как отрезок по определению - часть прямой, ограниченная двумя точками. отрезки, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
утверждение б) не верно по этой же причине, так как луч - это часть прямой, имеющий начальную точку и его можно продолжить только в одну сторону. лучи, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
утверждение в) верно, если прямые лежат в одной плоскости.
утверждение г) не верно по причине, указанной для утверждений а и б.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
правильный ответ:
утверждение в) верно, но только для прямых, лежащих в одной плоскости.
объяснение:
определение: "две прямые, пересекающиеся под прямым углом, называются перпендикулярными" (для плоскости).
определение: "две прямые называются перпендикулярными, если угол между ними равен 90°". (для пространства). при этом они не имеют общей точки.
утверждение а) не верно, так как отрезок по определению - часть прямой, ограниченная двумя точками. отрезки, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
утверждение б) не верно по этой же причине, так как луч - это часть прямой, имеющий начальную точку и его можно продолжить только в одну сторону. лучи, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
утверждение в) верно, если прямые лежат в одной плоскости.
утверждение г) не верно по причине, указанной для утверждений а и б.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.