контрольная по геометрии.
Задание 1.
Составьте уравнение прямой , проходящей через две точки А(-2,5; 2) и В( 4; -1,5).
3
Задание 2.
Найдите координаты точки Р, делящей отрезок АВ в отношении 5:3,считая от точки А, если А(-7;3) и В(1; -2).
5
Задание 3.
Построить окружности, заданные уравнением
(х+2)2+(у-3)2=9 и (у+1)2+х2=1
и определить их взаимное расположение.
6
Задание 4.
Докажите, что треугольник с вершинами в точках А(-3; 1),В(1;4),С(7; -4) является прямоугольным. Найдите его площадь и периметр.
6
Объяснение:
Разделим тождество на две части и решим каждого:
1+ tg×(180°- a)×sin×(90°-a)×sin a = cos²×(180°- a)
1) 1+ tg×(180°- a)×sin×(90°-a)×sin a
Сначало по формулам приведения переведем тригоном. функции:
1-tg a × cos a × sin a
Дальше,раскрываем тангенс по формуле: tg a =sin a/cos a :
1-sin a/cos a × cos a × sin a
Сокращаем cos a и получаем:
1-sin² a=> по осн. тригоном. тожд. => cos² a
2)cos²×(180°- a)
Воспользуемся формулой приведения:
cos²×(180°- a)= - cos²a
По основ. тригоном.тождеству sin²a+cos²a=1 =>cos²a=1-sin²a :
- cos²a = -(1-sin²a) = -1+sin²a=sin²a-1=cos²a
В первой части тождества получили: cos² a
И во второй части получили: cos² a
Поэтому:
cos² a=cos² a
Ч.т.д
1.Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки
2.Треугольник называется разносторонним, если любые две стороны его не равны друг другу
3.Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине
4.Равносторонний треугольник - это треугольник у которого все стороны равны между собой, а все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
5.Остроугольный-если все его три угла острые т.е. меньше 90 градусов
6.Прямоугольный-треугольник,у которого есть прямой угол, т.е. угол, равный 90 градусам
7.Если один из углов треугольника тупой, то треугольник называется тупоугольным