КОНТРОЛЬНАЯ РАБОТА № 2 Тема «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов». Вариант II ОХ, , 1. Найдите угол между лучом OB и положительной полуосью еслиВ (3; 3).
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Дано : треугольник ABC и треугольник HKP, AB = HK, AC = HP, угол LA = углу L
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.