Контрольная работа №4 тема. метрические соотношения в прямоугольном треугольнике. теорема пифагора. 1 вариант 1. катет прямоугольного треугольника равен 10 см, а его проекция на гипотенузу – 8 см. найдите гипотенузу треугольника. 2. в прямоугольном треугольнике катеты равны 20 и 21 см. найдите
периметр треугольника. 3. сторона ромба равна 35 см, а одна из диагоналей – 12 см. найдите вторую диагональ ромба. 4. основания равнобокой трапеции равны 33 см и 51 см, а ее диагональ – 58 см. найдите боковую сторону трапеции. 5. из точки к прямой проведены две наклонные, длины которых равны 11 см и
16 см. найдите проекции данных наклонных, если одна из проекций на 9см меньше другой.
Объяснение:
№1
Решение.
1) <АСВ= 180°-110°=70°- по св-ву смежных углов
2)АВ=ВС(<А=<АСВ) - из следствия теоремы о углах при основании равнобедренного треугольника.
3)∆АВС равнобедренный(АВ=ВС)
4)<В=180°-<А-<АСВ=180°-70°-70°=40°
ответ:<В=40°;<А=<АСВ=49°.
№2
. Решение
1)АВ=ВС(<А=<С) - из следствия теоремы о углах при основании равнобедренного треугольника.
2)Пусть АС=х см. Тогда АВ=ВС=х+3
х+х+х+3+3=75
3х+6=75
3х=75-6
3х=69|:3
х=23
Значит АС=23см
3)АВ=ВС=х+3=23+3=26см
ответ:АС=23 см; АВ=ВС=26 см
№3
. Решение
1)<3=<4 =90°- ВА - высота, <3=<4 смежные и прямые, т.е. они равны
2)∆СВА=∆ДВА (СА=ДА- св-во медианы, ВА-общая, <3=<4) по 1 признаку
3)<1=<2=144°/2=72°
ответ:<3=<4=90°;<1=<2=72°
Если правильно, можно лучший ответ?