Котангенсом угла (ctg α ) в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.
Тангенсом называется отношение противолежащего катета к прилежащему.
Если прилежащий катет равен 9, то противолежащий - 40.
Катеты 9 и 40 - из пифагоровых троек (Пифагоровыми тройками чисел называются числа, равные длинам сторон прямоугольного треугольника и удовлетворяющие формуле Пифагора. Причем, не существует пифагоровых троек, для которых гипотенуза и один из катетов являются катетами другой пифагоровой тройки). Поэтому для данного сочетания катетов гипотенуза равна 41 ( проверьте по т.Пифагора).
Итак, если ctg α=9/40, то тангенс - число, обратное данному, т.е. tg α =40/9.
Синус - отношение противолежащего катета к гипотенузе:
sin α=40/41,
соответственно косинус угла = отношение прилежащего катета к кипотенузе:
Уравнение касательной в точке (x1, y1) к эллипсу (x/a)^2 + (y/b)^2 = 1; x*x1/a^2 + y*y1/b^2 = 1; Вывести его проще простого - дифференциал в точке (x1, y1) равен 0, заменяется dx = x - x1; dy = y - y1; получается (x1/a^2)*(x - x1) + (y1/b^2)*(y - y1) = 0; откуда сразу получается нужное уравнение. Касательная в точке (x2, y2) на втором эллипсе (x/с)^2 + (y/d)^2 = 1; x*x2/c^2 + y*y2/d^2 = 1; Эти две прямые должны совпадать. То есть x2/c^2 = x1/a^2; y2/d^2 = y1/b^2; если переписать уравнения эллипсов так a^2*(x1/a^2)^2 + b^2*(y1/b^2)^2 = 1; c^2*(x2/c^2)^2 + d^2*(y2/d^2)^2 = 1; и обозначить u = (x1/a^2)^2 = (x2/c^2)^2; v = (y1/b^2)^2 = (y2/d^2)^2; то получается просто линейная система 2х2; a^2*u + b^2*v = 1; c^2*u + b^2*v = 1; У этой системы единственное решение (если есть, конечно, и не просто есть, а должно быть положительно определено, то есть u > 0; v > 0). Уравнения всех ЧЕТЫРЕХ общих касательных получаются потом перебором знаков перед корнями. То есть уравнения касательных будут +-x*√u +- y*√v = 1; Вот вся теория. Как это выглядит для этой задачки. a^2 = 6; b^2 = 1; c^2 = 4; d^2 = 9; 6*u + v = 1; 4*u + 9*v = 1; u = 4/25; √u = 2/5; v = 1/25; √v = 1/5; +-x*2 +- y = 5; вроде так. (ну, в смысле, 2x + y = 5; 2x - y = 5; -2x + y = 5; -2x - y = 5; ясно, что эти прямые образуют ромб). Решение не получилось бы, если бы эллипсы не пересекались.
tg α =40/9.
sin α=40/41
cos α=9/41.
Объяснение (подробно):
Котангенсом угла (ctg α ) в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.
Тангенсом называется отношение противолежащего катета к прилежащему.
Если прилежащий катет равен 9, то противолежащий - 40.
Катеты 9 и 40 - из пифагоровых троек (Пифагоровыми тройками чисел называются числа, равные длинам сторон прямоугольного треугольника и удовлетворяющие формуле Пифагора. Причем, не существует пифагоровых троек, для которых гипотенуза и один из катетов являются катетами другой пифагоровой тройки). Поэтому для данного сочетания катетов гипотенуза равна 41 ( проверьте по т.Пифагора).
Итак, если ctg α=9/40, то тангенс - число, обратное данному, т.е. tg α =40/9.
Синус - отношение противолежащего катета к гипотенузе:
sin α=40/41,
соответственно косинус угла = отношение прилежащего катета к кипотенузе:
cos α=9/41.
x*x1/a^2 + y*y1/b^2 = 1;
Вывести его проще простого - дифференциал в точке (x1, y1) равен 0, заменяется dx = x - x1; dy = y - y1; получается (x1/a^2)*(x - x1) + (y1/b^2)*(y - y1) = 0; откуда сразу получается нужное уравнение.
Касательная в точке (x2, y2) на втором эллипсе (x/с)^2 + (y/d)^2 = 1;
x*x2/c^2 + y*y2/d^2 = 1;
Эти две прямые должны совпадать. То есть x2/c^2 = x1/a^2; y2/d^2 = y1/b^2;
если переписать уравнения эллипсов так
a^2*(x1/a^2)^2 + b^2*(y1/b^2)^2 = 1;
c^2*(x2/c^2)^2 + d^2*(y2/d^2)^2 = 1;
и обозначить u = (x1/a^2)^2 = (x2/c^2)^2; v = (y1/b^2)^2 = (y2/d^2)^2;
то получается просто линейная система 2х2;
a^2*u + b^2*v = 1;
c^2*u + b^2*v = 1;
У этой системы единственное решение (если есть, конечно, и не просто есть, а должно быть положительно определено, то есть u > 0; v > 0). Уравнения всех ЧЕТЫРЕХ общих касательных получаются потом перебором знаков перед корнями. То есть уравнения касательных будут +-x*√u +- y*√v = 1;
Вот вся теория. Как это выглядит для этой задачки.
a^2 = 6; b^2 = 1; c^2 = 4; d^2 = 9;
6*u + v = 1;
4*u + 9*v = 1;
u = 4/25; √u = 2/5; v = 1/25; √v = 1/5;
+-x*2 +- y = 5; вроде так. (ну, в смысле, 2x + y = 5; 2x - y = 5; -2x + y = 5; -2x - y = 5; ясно, что эти прямые образуют ромб).
Решение не получилось бы, если бы эллипсы не пересекались.