два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
От квадрата со стороной a отсечены:
треугольник, равный 1/8 площади квадрата
два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
AO/OH =2/1 (AH - медиана), AO=OC (радиусы) => OC/OH =2/1.
BD⊥AC, EF⊥AC => BD||EF. По теореме Фалеса EF делит стороны BC и CD в том же отношении, что и OC, то есть пополам.
DAE= (DAB-EAF)/2 =(90-60)/2 =15
tg15 =tg(30/2) =(1-cos30)/sin30 =2(1-√3/2) =2-√3
Найдите:
так как тругольник АВС равносторонний все стороны равны а и углы равны 60 град
а)|векторAB+векторBC|=|векторAC|= а
б)|AB вектор+АС вектор|=|AD|=a√3
при параллельном перносе вектора АС получается вектор ВД
сумма векторов АВ и ВД -вектор АД
в треугольнике АВД угол В=120 град
по теореме косинусов
АД^2 = AB^2+BD^2 -2 AB*BD*cos 120= a^2+a^2-2aa*(-1/2)=2a^2+a^2=3a^2
AD = a√3
в)|AB вектор+CB вектор|=|AE|=a√3
при параллельном перeносе вектора СB получается вектор ВE
сумма векторов АВ и ВE =вектор АE
в треугольнике АВE угол AВE=120 град
по теореме косинусов
АE^2 = AB^2+BE^2 -2 AB*BE*cos 120= a^2+a^2-2aa*(-1/2)=2a^2+a^2=3a^2
AE = a√3
г)|вектор ВА-ВС вектор|=|BK|= а
при параллельном перeносе вектора -BC получается вектор ВK
сумма векторов ВA и AK =вектор BK
трекгольник ABK - равносторонний все стороны равны ВК=а
д)|вектор АВ-вектор AC|=|вектор АВ+вектор ВМ|=|AM|=a
в раностороннем треугольнике АВМ - все стороны равны а --АМ=а