Координаты вершин треугольника ABC: A (-2; 4), B (3; -2) и C (-1; -3). Если ABC При параллельном копировании треугольника точка B перемещается в точку C, точку A изображения Найдите координаты
Периметр P правильного треугольника равен 36 см, а расстояние от некоторой точки до каждой из сторон треугольника 10см. Найдите расстояние от этой точки до плоскости треугольника.
Из заданной точки опускаем перпендикуляр h к плоскости треугольника. h - расстояние от этой точки до плоскости треугольника. Так как заданная точка равноудалена от каждой стороны треугольника, то и каждая точка перпендикуляра h тоже равноудалена от каждой стороны треугольника. На плоскости треугольника точка, равноудаленная от каждой сторон - это центр вписанной окружности. Радиус вписанной окружности r правильного треугольника r = P / 6√3 h находим по теореме Пифагора h = √( 10² - r² ) h = √( 10² - (P / 6√3)² ) h = √( 10² - (36 / 6√3)² ) = 2 √22 ( ≈ 9.38 ) см
Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.
Решение Пусть a , b и c катеты и гипотенуза треугольника соответственно. 2R₁ =a ; 2R₂ =b ; 2R₃= c ⇒ R₁ =a/2 ; R₂ =b/2; R₃= c/2 . Площадь поверхности шара вычисляется по формуле S =4πR² , где R - радиус шара. Можем написать S₁=4πR₁²=4π(a/2)² =πa² ; S₂ =4πR₂²=4π(b/2)² =πb² ; Площадь поверхности наибольшего шара: S₃ =4πR₃²=4π(c/2)² =πc² = π(a² +b²) =πa²+πb² =S₁+S₂. * * * c² =a² +b² по теореме Пифагора * * *
Из заданной точки опускаем перпендикуляр h к плоскости треугольника. h - расстояние от этой точки до плоскости треугольника. Так как заданная точка равноудалена от каждой стороны треугольника, то и каждая точка перпендикуляра h тоже равноудалена от каждой стороны треугольника.
На плоскости треугольника точка, равноудаленная от каждой сторон - это центр вписанной окружности.
Радиус вписанной окружности r правильного треугольника
r = P / 6√3
h находим по теореме Пифагора
h = √( 10² - r² )
h = √( 10² - (P / 6√3)² )
h = √( 10² - (36 / 6√3)² ) = 2 √22 ( ≈ 9.38 ) см
Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.
Решение
Пусть a , b и c катеты и гипотенуза треугольника соответственно.
2R₁ =a ; 2R₂ =b ; 2R₃= c ⇒ R₁ =a/2 ; R₂ =b/2; R₃= c/2 .
Площадь поверхности шара вычисляется по формуле S =4πR² , где
R - радиус шара.
Можем написать
S₁=4πR₁²=4π(a/2)² =πa² ;
S₂ =4πR₂²=4π(b/2)² =πb² ;
Площадь поверхности наибольшего шара:
S₃ =4πR₃²=4π(c/2)² =πc² = π(a² +b²) =πa²+πb² =S₁+S₂.
* * * c² =a² +b² по теореме Пифагора * * *
ответ : S₁+S₂.