Tg C = √3 / √6 = √(3/6) = 1 / √2. Через этот тангенс находим синус С = tg C / (+-√(1+tg²C)) = 1 /(√2*(1+(1/2))) = 1 / √3. Высота в прямоугольном треугольнике АВС равна ha = √6*sin C = = √6*(1 / √3) = √2. Расстояние от точки S до ВС - это гипотенуза треугольника, где один катет SA = 2 см, а второй - высота ha = √2. Отсюда искомое расстояние от точки S до ВС = √(2²+(√2)²) = √6 = = 2,44949 см. Высоту ha можно было найти по другой формуле: ha =2√(p(p-a)(p-b)(p-c)) / a. Для этого надо найти диагональ А = √((√3)²+(√6)²) = √9 = 3 см. А рисунок к этой задаче очень прост - сначала вычертить план треугольника и высоту к гипотенузе, а затем вертикальную плоскость с отрезком SA и высотой ha.
Здесь два важных свойства. 1) Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника. АС:ВС=10:18. В треугольнике АВ=28, АС=10х, ВС=18х
2) Угол АВС равен половине дуги АС на которую он опирается как вписанный угол. Угол АСД равен половине дуги АС - угол между касательной и секущей АС.
Треугольники АСД и ВДС подобны по двум углам. Угол при точке Д у них общий. Из подобия АС:ВС=АД:АС=ДС:ДВ
1) Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника.
АС:ВС=10:18.
В треугольнике АВ=28, АС=10х, ВС=18х
2) Угол АВС равен половине дуги АС на которую он опирается как вписанный угол.
Угол АСД равен половине дуги АС - угол между касательной и секущей АС.
Треугольники АСД и ВДС подобны по двум углам. Угол при точке Д у них общий.
Из подобия АС:ВС=АД:АС=ДС:ДВ
Вд=18АД/10
Отсюда
АД+28=18 АД/10
8АД/10=28
АД=35
Тогда СД²=35·63
СД=21√5